Active Filters

  • (-) Empa Authors = Burgert, Ingo
  • (-) Journal ≠ Annals of Botany
Search Results 1 - 20 of 127

Pages

  • RSS Feed
Select Page
High-performance timber-concrete-composites with polymer concrete and beech wood
Stucki, S., Kelch, S., Mamie, T., Burckhardt, U., Grönquist, P., Elsener, R., … Burgert, I. (2024). High-performance timber-concrete-composites with polymer concrete and beech wood. Construction and Building Materials, 411, 134069 (11 pp.). https://doi.org/10.1016/j.conbuildmat.2023.134069
Dieter Eckstein's bibliography and legacy of connection to wood biology and tree-ring science
Čufar, K., Liang, E., Smith, K. T., Ważny, T., Wrobel, S., Cherubini, P., … Sass-Klaassen, U. (2024). Dieter Eckstein's bibliography and legacy of connection to wood biology and tree-ring science. Dendrochronologia, 83, 126165. https://doi.org/10.1016/j.dendro.2024.126165
Ectopic callose deposition into woody biomass modulates the nano-architecture of macrofibrils
Bourdon, M., Lyczakowski, J. J., Cresswell, R., Amsbury, S., Vilaplana, F., Le Guen, M. J., … Helariutta, Y. (2023). Ectopic callose deposition into woody biomass modulates the nano-architecture of macrofibrils. Nature Plants, 9(9), 1530-1546. https://doi.org/10.1038/s41477-023-01459-0
Emerging engineered wood for building applications
Ding, Y., Pang, Z., Lan, K., Yao, Y., Panzarasa, G., Xu, L., … Hu, L. (2023). Emerging engineered wood for building applications. Chemical Reviews, 123(5), 1843-1888. https://doi.org/10.1021/acs.chemrev.2c00450
Passive climate regulation with transpiring wood for buildings with increased energy efficiency
Ding, Y., Dreimol, C. H., Zboray, R., Tu, K., Stucki, S., Keplinger, T., … Burgert, I. (2023). Passive climate regulation with transpiring wood for buildings with increased energy efficiency. Materials Horizons, 10(1), 257-267. https://doi.org/10.1039/D2MH01016J
Push-out tests of wet-process adhesive-bonded beech timber-concrete and timber-polymer-concrete composite conections
Füchslin, M., Grönquist, P., Stucki, S., Mamie, T., Kelch, S., Burgert, I., & Frangi, A. (2023). Push-out tests of wet-process adhesive-bonded beech timber-concrete and timber-polymer-concrete composite conections. In A. Q. Nyrud, K. A. Malo, K. Nore, K. W. L. Alsen, S. Tulebekova, E. R. Staehr, … W. Wuyts (Eds.), Vol. 5. World conference on timber engineering (WCTE 2023) (pp. 3241-3247). https://doi.org/10.52202/069179-0422
Maximierung der Verwendung von Holz im Bauwesen als Beitrag zu Netto-Null – das Forschungsprojekt «MainWood»
Ghazoul, J., Bugmann, H., Burgert, I., Hellweg, S., Schweier, J., Weinand, Y., & Rigling, A. (2023). Maximierung der Verwendung von Holz im Bauwesen als Beitrag zu Netto-Null – das Forschungsprojekt «MainWood». Schweizerische Zeitschrift für Forstwesen, 174(6), 40-43. https://doi.org/10.3188/szf.2023.0384
Anisotropic wood-hydrogel composites: extending mechanical properties of wood towards soft materials' applications
Koch, S. M., Goldhahn, C., Müller, F. J., Yan, W., Pilz-Allen, C., Bidan, C. M., … Burgert, I. (2023). Anisotropic wood-hydrogel composites: extending mechanical properties of wood towards soft materials' applications. Materials Today Bio, 22, 100772 (10 pp.). https://doi.org/10.1016/j.mtbio.2023.100772
Sustainability in wood products: a new perspective for handling natural diversity
Schubert, M., Panzarasa, G., & Burgert, I. (2023). Sustainability in wood products: a new perspective for handling natural diversity. Chemical Reviews, 123(5), 1889-1924. https://doi.org/10.1021/acs.chemrev.2c00360
The influence of wood surface treatments with different biomolecules on dry and wet strength of linear friction welded joints
Stucki, S., Lange, H., Dreimol, C. H., Weinand, Y., & Burgert, I. (2023). The influence of wood surface treatments with different biomolecules on dry and wet strength of linear friction welded joints. Journal of Adhesion Science and Technology, 37(22), 3167-3186. https://doi.org/10.1080/01694243.2023.2181550
Shaking table investigation of a low-cost and sustainable timber-based energy dissipation system with recentering ability
Tsiavos, A., Kolyfetis, D., Panzarasa, G., Burgert, I., & Stojadinovic, B. (2023). Shaking table investigation of a low-cost and sustainable timber-based energy dissipation system with recentering ability. Bulletin of Earthquake Engineering, 21(8), 3949-3968. https://doi.org/10.1007/s10518-022-01464-2
Thermoresponsive smart gating wood membranes
Ding, Y., Panzarasa, G., Stucki, S., Burgert, I., & Keplinger, T. (2022). Thermoresponsive smart gating wood membranes. ACS Sustainable Chemistry and Engineering, 10(17), 5517-5525. https://doi.org/10.1021/acssuschemeng.2c00111
Sustainable wood electronics by iron-catalyzed laser-induced graphitization for large-scale applications
Dreimol, C. H., Guo, H., Ritter, M., Keplinger, T., Ding, Y., Günther, R., … Panzarasa, G. (2022). Sustainable wood electronics by iron-catalyzed laser-induced graphitization for large-scale applications. Nature Communications, 13(1), 3680 (12 pp.). https://doi.org/10.1038/s41467-022-31283-7
Densified delignified wood as bio-based fiber reinforcement for stiffness increase of timber structures
Koch, S. M., Grönquist, P., Monney, C., Burgert, I., & Frangi, A. (2022). Densified delignified wood as bio-based fiber reinforcement for stiffness increase of timber structures. Composites Part A: Applied Science and Manufacturing, 163, 107220 (10 pp.). https://doi.org/10.1016/j.compositesa.2022.107220
Intercellular matrix infiltration improves the wet strength of delignified wood composites
Koch, S. M., Pillon, M., Keplinger, T., Dreimol, C. H., Weinkötz, S., & Burgert, I. (2022). Intercellular matrix infiltration improves the wet strength of delignified wood composites. ACS Applied Materials and Interfaces, 14(27), 31216-31224. https://doi.org/10.1021/acsami.2c04014
Roadmap on soft robotics: multifunctionality, adaptability and growth without borders
Mazzolai, B., Mondini, A., Del Dottore, E., Margheri, L., Carpi, F., Suzumori, K., … Lendlein, A. (2022). Roadmap on soft robotics: multifunctionality, adaptability and growth without borders. Multifunctional Materials, 5(3), 032001 (62 pp.). https://doi.org/10.1088/2399-7532/ac4c95
Functionalized cellulose nanocrystals as active reinforcements for light-actuated 3D-printed structures
Müller, L. A. E., Zingg, A., Arcifa, A., Zimmermann, T., Nyström, G., Burgert, I., & Siqueira, G. (2022). Functionalized cellulose nanocrystals as active reinforcements for light-actuated 3D-printed structures. ACS Nano, 16(11), 18210-18222. https://doi.org/10.1021/acsnano.2c05628
A second life for wood residuals
Panzarasa, G., & Burgert, I. (2022). A second life for wood residuals. Nature Sustainability, 5, 559-560. https://doi.org/10.1038/s41893-022-00896-7
Designing functional wood materials for novel engineering applications
Panzarasa, G., & Burgert, I. (2022). Designing functional wood materials for novel engineering applications. Holzforschung, 76(2), 211-222. https://doi.org/10.1515/hf-2021-0125
Shine-through luminescent wood membranes
Ritter, M., Burgert, I., & Panzarasa, G. (2022). Shine-through luminescent wood membranes. Materials Advances, 3(3), 1767-1771. https://doi.org/10.1039/D1MA01045J
 

Pages