Active Filters

  • (-) Empa Authors = Cabane, Etienne
  • (-) Keywords ≠ chemical modification
Search Results 1 - 20 of 26
Select Page
Quasi-static and fatigue performance of bonded acetylated rubberwood (<em>Hevea brasiliensis</em>, Müll. Arg.)
Olaniran, S. O., Clerc, G., Cabane, E., Brunner, A. J., & Rüggeberg, M. (2021). Quasi-static and fatigue performance of bonded acetylated rubberwood (Hevea brasiliensis, Müll. Arg.). European Journal of Wood and Wood Products, 79, 49-58. https://doi.org/10.1007/s00107-020-01610-0
Nanoscale chemical features of the natural fibrous material wood
Gusenbauer, C., Jakob, D. S., Xu, X. G., Vezenov, D. V., Cabane, É., & Konnerth, J. (2020). Nanoscale chemical features of the natural fibrous material wood. Biomacromolecules, 21(10), 4244-4252. https://doi.org/10.1021/acs.biomac.0c01028
Visualization of the stimuli-responsive surface behavior of functionalized wood material by chemical force microscopy
Gusenbauer, C., Cabane, E., Gierlinger, N., Colson, J., & Konnerth, J. (2019). Visualization of the stimuli-responsive surface behavior of functionalized wood material by chemical force microscopy. Scientific Reports, 9(1), 18569 (9 pp.). https://doi.org/10.1038/s41598-019-54664-3
Status and future scope of plant-based green hydrogels in biomedical engineering
Mohammadinejad, R., Maleki, H., Larrañeta, E., Fajardo, A. R., Bakhshian Nik, A., Shavandi, A., … Thakur, V. K. (2019). Status and future scope of plant-based green hydrogels in biomedical engineering. Applied Materials Today, 16, 213-246. https://doi.org/10.1016/j.apmt.2019.04.010
Mechanical behaviour of acetylated rubber wood subjected to artificial weathering
Olaniran, S. O., Etienne, C., Keplinger, T., Olufemi, B., & Rüggeberg, M. (2019). Mechanical behaviour of acetylated rubber wood subjected to artificial weathering. Holzforschung, 73(11), 1005-1016. https://doi.org/10.1515/hf-2018-0274
Grafting of amphiphilic block copolymers on lignocellulosic materials via SI-AGET-ATRP
Vidiella del Blanco, M., Gomez, V., Fleckenstein, P., Keplinger, T., & Cabane, E. (2019). Grafting of amphiphilic block copolymers on lignocellulosic materials via SI-AGET-ATRP. Journal of Polymer Science. Part A: Polymer Chemistry, 57(8), 885-897. https://doi.org/10.1002/pola.29340
Solvent-controlled spatial distribution of SI-AGET-ATRP grafted polymers in lignocellulosic materials
Vidiella del Blanco, M., Gomez, V., Keplinger, T., Cabane, E., & Grafulha Morales, L. F. (2019). Solvent-controlled spatial distribution of SI-AGET-ATRP grafted polymers in lignocellulosic materials. Biomacromolecules, 20(1), 336-346. https://doi.org/10.1021/acs.biomac.8b01393
Porosity and pore size distribution of native and delignified beech wood determined by mercury intrusion porosimetry
Vitas, S., Segmehl, J. S., Burgert, I., & Cabane, E. (2019). Porosity and pore size distribution of native and delignified beech wood determined by mercury intrusion porosimetry. Materials, 12(3), 416 (13 pp.). https://doi.org/10.3390/ma12030416
Rejection of micron-sized particles using beech wood xylem
Vitas, S., Beckmann, P., Skibinski, B., Goldhahn, C., Muff, L. F., & Cabane, E. (2019). Rejection of micron-sized particles using beech wood xylem. Environmental Science: Water Research and Technology, 5(5), 944-955. https://doi.org/10.1039/C8EW00774H
Beech wood cross sections as natural templates to fabricate superhydrophobic surfaces
Wang, Y., Vitas, S., Burgert, I., & Cabane, E. (2019). Beech wood cross sections as natural templates to fabricate superhydrophobic surfaces. Wood Science and Technology, 53(5), 985-999. https://doi.org/10.1007/s00226-019-01113-z
Liquid-like SiO<sub>2</sub>-<i>g</I>-PDMS coatings on wood surfaces with underwater durability, antifouling, antismudge, and self-healing properties
Wang, Y., Yan, W., Frey, M., Vidiella del Blanco, M., Schubert, M., Adobes-Vidal, M., & Cabane, E. (2019). Liquid-like SiO2-g-PDMS coatings on wood surfaces with underwater durability, antifouling, antismudge, and self-healing properties. Advanced Sustainable Systems, 3(1), 1800070 (12 pp.). https://doi.org/10.1002/adsu.201800070
Timber-mortar composites: the effect of sol-gel surface modification on the wood-adhesive interface
Kostic, S., Merk, V., Berg, J. K., Hass, P., Burgert, I., & Cabane, E. (2018). Timber-mortar composites: the effect of sol-gel surface modification on the wood-adhesive interface. Composite Structures, 201, 828-833. https://doi.org/10.1016/j.compstruct.2018.06.108
Enhancing the performance of beech-timber concrete hybrids by a wood surface pre-treatment using sol-gel chemistry
Kostić, S., Meier, S., Cabane, E., & Burgert, I. (2018). Enhancing the performance of beech-timber concrete hybrids by a wood surface pre-treatment using sol-gel chemistry. Heliyon, 4(9), e00762 (18 pp.). https://doi.org/10.1016/j.heliyon.2018.e00762
Functional lignocellulosic material for the remediation of copper(II) ions from water: towards the design of a wood filter
Vitas, S., Keplinger, T., Reichholf, N., Figi, R., & Cabane, E. (2018). Functional lignocellulosic material for the remediation of copper(II) ions from water: towards the design of a wood filter. Journal of Hazardous Materials, 355, 119-127. https://doi.org/10.1016/j.jhazmat.2018.05.015
A straightforward thiol-ene click reaction to modify lignocellulosic scaffolds in water
Kostić, S., Berg, J. K., Casdorff, K., Merk, V., Burgert, I., & Cabane, E. (2017). A straightforward thiol-ene click reaction to modify lignocellulosic scaffolds in water. Green Chemistry, 19(17), 4017-4022. https://doi.org/10.1039/c7gc01601h
Underwater superoleophobic wood cross sections for efficient oil/water separation
Vidiella del Blanco, M., Fischer, E. J., & Cabane, E. (2017). Underwater superoleophobic wood cross sections for efficient oil/water separation. Advanced Materials Interfaces, 4(21), 1700584 (8 pp.). https://doi.org/10.1002/admi.201700584
Wood composites with wettability patterns prepared by controlled and selective chemical modification of a three-dimensional wood scaffold
Wang, Y., Tian, T., & Cabane, E. (2017). Wood composites with wettability patterns prepared by controlled and selective chemical modification of a three-dimensional wood scaffold. ACS Sustainable Chemistry and Engineering, 5(12), 11686-11694. https://doi.org/10.1021/acssuschemeng.7b03104
Biomaterial wood: wood-based and bioinspired materials
Burgert, I., Keplinger, T., Cabane, E., Merk, V., & Rüggeberg, M. (2016). Biomaterial wood: wood-based and bioinspired materials. In Y. S. Kim, R. Funada, & A. P. Singh (Eds.), Secondary xylem biology: origins, functions, and applications (pp. 259-281). https://doi.org/10.1016/B978-0-12-802185-9.00013-9
Functional lignocellulosic materials prepared by ATRP from a wood scaffold
Cabane, E., Keplinger, T., Künniger, T., Merk, V., & Burgert, I. (2016). Functional lignocellulosic materials prepared by ATRP from a wood scaffold. Scientific Reports, 6, 31287 (10 pp.). https://doi.org/10.1038/srep31287
UV-protection of wood surfaces by controlled morphology fine-tuning of ZnO nanostructures
Guo, H., Fuchs, P., Cabane, E., Michen, B., Hagendorfer, H., Romanyuk, Y. E., & Burgert, I. (2016). UV-protection of wood surfaces by controlled morphology fine-tuning of ZnO nanostructures. Holzforschung, 70(8), 699-708. https://doi.org/10.1515/hf-2015-0185