| 3D printable piezoresistive skin-like tactile sensors for soft robotics
Bascucci, C., Hughes, J., & Clemens, F. (2024). 3D printable piezoresistive skin-like tactile sensors for soft robotics. In C. Binetruy & F. Jacquemin (Eds.), Vol. 6. Multifunctional and smart composites. Proceedings of the 21st European conference on composite materials (pp. 269-276). European Society for Composite Materials (ESCM); Ecole Centrale de Nantes. |
| Extrusion based additive manufacturing of polymer derived ceramics
Clemens, F., Sarraf, F., & Eckey, L. (2024). Extrusion based additive manufacturing of polymer derived ceramics. In Eighteenth European inter-regional conference on ceramics "CIEC-18" (pp. 1-5). |
| 3D printable self-sensing magnetorheological elastomer
Costi, L., Georgopoulou, A., Mondal, S., Iida, F., & Clemens, F. (2024). 3D printable self-sensing magnetorheological elastomer. Macromolecular Materials and Engineering, 309(2), 2300294 (14 pp.). https://doi.org/10.1002/mame.202300294 |
| Bioprinting of stable bionic interfaces using piezoresistive hydrogel organoelectronics
Georgopoulou, A., Filippi, M., Stefani, L., Drescher, F., Balciunaite, A., Scherberich, A., … Clemens, F. (2024). Bioprinting of stable bionic interfaces using piezoresistive hydrogel organoelectronics. Advanced Healthcare Materials, 2400051 (13 pp.). https://doi.org/10.1002/adhm.202400051 |
| Soft chemiresistive sensing shields soft robotic actuators from mechanical degradation due to critical solvent exposure
Georgopoulou, A., Eckey, L. M., & Clemens, F. (2024). Soft chemiresistive sensing shields soft robotic actuators from mechanical degradation due to critical solvent exposure. Advanced Engineering Materials, 26(10), 2301723 (10 pp.). https://doi.org/10.1002/adem.202301723 |
| Soft self-regulating heating elements for thermoplastic elastomer-based electronic skin applications
Georgopoulou, A., Diethelm, P., Wagner, M., Spolenak, R., & Clemens, F. (2024). Soft self-regulating heating elements for thermoplastic elastomer-based electronic skin applications. 3D Printing and Additive Manufacturing, 11(2), e828-e838. https://doi.org/10.1089/3dp.2022.0242 |
| Additive manufacturing of fiber-reinforced zirconia-toughened alumina ceramic matrix composites by material extrusion-based technology
Hadian, A., Duckek, J., Parrilli, A., Liersch, A., & Clemens, F. (2024). Additive manufacturing of fiber-reinforced zirconia-toughened alumina ceramic matrix composites by material extrusion-based technology. Advanced Engineering Materials, 2302158 (13 pp.). https://doi.org/10.1002/adem.202302158 |
| Chemical modification of lead zirconate titanate piezoceramics through cold-sintering process
Ichangi, A., Bergamini, A., & Clemens, F. (2024). Chemical modification of lead zirconate titanate piezoceramics through cold-sintering process. Journal of Alloys and Compounds, 988, 174282 (9 pp.). https://doi.org/10.1016/j.jallcom.2024.174282 |
| Electrospun (K,Na)NbO<sub>3</sub> piezoceramic fibers for self-powered tactile sensing application
Ichangi, A., Derichsweiler, C., Mathur, S., & Clemens, F. (2024). Electrospun (K,Na)NbO3 piezoceramic fibers for self-powered tactile sensing application. Advanced Engineering Materials, 26(1), 230166 (10 pp.). https://doi.org/10.1002/adem.202301066 |
| Lead-free electrospun piezoceramic fiber-based composites for selfpowered tactile sensing application
Ichangi, A., Derichsweiler, C., Mathur, S., & Clemens, F. (2024). Lead-free electrospun piezoceramic fiber-based composites for selfpowered tactile sensing application. In C. Binetruy & F. Jacquemin (Eds.), Vol. 6. Multifunctional and smart composites. Proceedings of the 21st European conference on composite materials (pp. 143-150). European Society for Composite Materials (ESCM); Ecole Centrale de Nantes. |
| Magnetoactive behavior and temperature rise in soft ferromagnetic and ferrimagnetic elastomeric membranes
Mondal, S., Orkisz, P., Sapiński, B., Graule, T., Spolenak, R., & Clemens, F. (2024). Magnetoactive behavior and temperature rise in soft ferromagnetic and ferrimagnetic elastomeric membranes. In C. Binetruy & F. Jacquemin (Eds.), Vol. 6. Multifunctional and smart composites. Proceedings of the 21st European conference on composite materials (pp. 340-349). European Society for Composite Materials (ESCM); Ecole Centrale de Nantes. |
| Soft magnetoactive morphing structures with self-sensing properties, using multi-material extrusion additive manufacturing
Mondal, S., Kwaśniowski, M., Georgopoulou, A., Sapiński, B., Graule, T., & Clemens, F. (2024). Soft magnetoactive morphing structures with self-sensing properties, using multi-material extrusion additive manufacturing. In C. Klahn, M. Meboldt, & J. Ferchow (Eds.), Springer tracts in additive manufacturing. Industrializing additive manufacturing. Proceedings of AMPA2023 (pp. 365-386). https://doi.org/10.1007/978-3-031-42983-5_25 |
| Expanding the research capabilities of an experimental setup for testing magnetoactive materials
Orkisz, P., Mondal, S., Clemens, F., Graule, T., & Sapiński, B. (2024). Expanding the research capabilities of an experimental setup for testing magnetoactive materials. In A. Kot (Ed.), International Carpathian Control Conference (ICCC). Proceedings of the 25th International Carpathian Control Conference (ICCC) (pp. 1-5). https://doi.org/10.1109/ICCC62069.2024.10569720 |
| Piezoresistive properties for soft structures using hybrid CCB/CNT-based natural rubber latex composites
Promsung, R., Georgopoulou, A., Nakaramontri, Y., Kalkornsurapranee, E., & Clemens, F. (2024). Piezoresistive properties for soft structures using hybrid CCB/CNT-based natural rubber latex composites. Applied Materials Today, 39, 102302 (14 pp.). https://doi.org/10.1016/j.apmt.2024.102302 |
| Rapid formation of carbon nanotubes–natural rubber films cured with glutaraldehyde for reducing percolation threshold concentration
Promsung, R., Chuaybamrung, A., Georgopoulou, A., Clemens, F., Nakaramontri, Y., Johns, J., … Kalkornsurapranee, E. (2024). Rapid formation of carbon nanotubes–natural rubber films cured with glutaraldehyde for reducing percolation threshold concentration. Discover Nano, 19(1), 30 (14 pp.). https://doi.org/10.1186/s11671-024-03970-5 |
| Crosslinking and pyrolysis of a methyl-silsesquioxane: effect of heating rate on fabrication of polymer derived mullite ceramics using thermoplastic shaping
Sarraf, F., Hadian, A., Gfeller, F., Churakov, S. V., & Clemens, F. (2024). Crosslinking and pyrolysis of a methyl-silsesquioxane: effect of heating rate on fabrication of polymer derived mullite ceramics using thermoplastic shaping. Materials and Design, 237, 112578 (13 pp.). https://doi.org/10.1016/j.matdes.2023.112578 |
| PVDF hybrid nanocomposites with graphene and carbon nanotubes and their thermoresistive and joule heating properties
Stoyanova, S., Ivanov, E., Hegde, L. R., Georgopoulou, A., Clemens, F., Bedoui, F., & Kotsilkova, R. (2024). PVDF hybrid nanocomposites with graphene and carbon nanotubes and their thermoresistive and joule heating properties. Nanomaterials, 14(11), 901 (18 pp.). https://doi.org/10.3390/nano14110901 |
| Material extrusion additive manufacturing of advanced ceramics: towards the production of large components
Clemens, F., Sarraf, F., Borzì, A., Neels, A., & Hadian, A. (2023). Material extrusion additive manufacturing of advanced ceramics: towards the production of large components. Journal of the European Ceramic Society, 43(7), 2752-2760. https://doi.org/10.1016/j.jeurceramsoc.2022.10.019 |
| Effect of stearic acid on the mechanical and rheological properties of PLA/HA biocomposites
Cé de Andrade, J., Cabral, F., Clemens, F. J., Leite Vieira, J., B.P. Soares, M., Hotza, D., & Fredel, M. C. (2023). Effect of stearic acid on the mechanical and rheological properties of PLA/HA biocomposites. Materials Today Communications, 35, 106357 (7 pp.). https://doi.org/10.1016/j.mtcomm.2023.106357 |
| A multi-material robotic finger with integrated proprioceptive and tactile capabilities produced with a circular process
Georgopoulou, A., Hamelryckx, S., Junge, K., Eckey, L. M., Rogler, S., Katzschmann, R., … Clemens, F. (2023). A multi-material robotic finger with integrated proprioceptive and tactile capabilities produced with a circular process. In 2023 IEEE 6th international conference on soft robotics (RoboSoft 2023) (p. (6 pp.). https://doi.org/10.1109/RoboSoft55895.2023.10122054 |