Active Filters

  • (-) Empa Authors = Siqueira, Gilberto
Search Results 1 - 20 of 65

Pages

  • RSS Feed
Select Page
Polysiloxane inks for multimaterial 3d printing of high-permittivity dielectric elastomers
Danner, P. M., Pleij, T., Siqueira, G., Bayles, A. V., Venkatesan, T. R., Vermant, J., & Opris, D. M. (2024). Polysiloxane inks for multimaterial 3d printing of high-permittivity dielectric elastomers. Advanced Functional Materials, 34(17), 2313167 (15 pp.). https://doi.org/10.1002/adfm.202313167
Additive manufacturing of nanocellulose aerogels with structure-oriented thermal, mechanical, and biological properties
Sivaraman, D., Nagel, Y., Siqueira, G., Chansoria, P., Avaro, J., Neels, A., … Zhao, S. (2024). Additive manufacturing of nanocellulose aerogels with structure-oriented thermal, mechanical, and biological properties. Advanced Science, 11(24), 2307921 (11 pp.). https://doi.org/10.1002/advs.202307921
Versatile mechanically tunable hydrogels for therapeutic delivery applications
Sun, Q., Tao, S., Bovone, G., Han, G., Deshmukh, D., Tibbitt, M. W., … Fischer, P. (2024). Versatile mechanically tunable hydrogels for therapeutic delivery applications. Advanced Healthcare Materials, 13(18), 2304287 (10 pp.). https://doi.org/10.1002/adhm.202304287
Selection of suitable cellulose nanofibers derived from eco-friendly sources for the production of lightweight cementitious composites with tuned rheological, mechanical, and microstructure properties
Taheri, H., Heidari, N. A., Perrot, A., Siqueira, G., Nyström, G., & Kawashima, S. (2024). Selection of suitable cellulose nanofibers derived from eco-friendly sources for the production of lightweight cementitious composites with tuned rheological, mechanical, and microstructure properties. Cement and Concrete Composites, 151, 105586 (15 pp.). https://doi.org/10.1016/j.cemconcomp.2024.105586
Printed humidity sensors from renewable and biodegradable materials
Aeby, X., Bourely, J., Poulin, A., Siqueira, G., Nyström, G., & Briand, D. (2023). Printed humidity sensors from renewable and biodegradable materials. Advanced Materials Technologies, 8(5), 2201302 (8 pp.). https://doi.org/10.1002/admt.202201302
Thermally insulating cellulose nanofiber aerogels from brewery residues
Ahmadi Heidari, N., Fathi, M., Hamdami, N., Taheri, H., Siqueira, G., & Nyström, G. (2023). Thermally insulating cellulose nanofiber aerogels from brewery residues. ACS Sustainable Chemistry and Engineering, 11(29), 10698-10708. https://doi.org/10.1021/acssuschemeng.3c01113
Nanocomposites of cellulose nanofibers incorporated with carvacrol via stabilizing octenyl succinic anhydride-modified ɛ-polylysine
Amoroso, L., De France, K. J., Kummer, N., Ren, Q., Siqueira, G., & Nyström, G. (2023). Nanocomposites of cellulose nanofibers incorporated with carvacrol via stabilizing octenyl succinic anhydride-modified ɛ-polylysine. International Journal of Biological Macromolecules, 242, 124869 (12 pp.). https://doi.org/10.1016/j.ijbiomac.2023.124869
Digital manufacturing of personalised footwear with embedded sensors
Binelli, M. R., van Dommelen, R., Nagel, Y., Kim, J., Haque, R. I., Coulter, F. B., … Briand, D. (2023). Digital manufacturing of personalised footwear with embedded sensors. Scientific Reports, 13(1), 1962 (11 pp.). https://doi.org/10.1038/s41598-023-29261-0
3D bioprinting of diatom-laden living materials for water quality assessment
Boons, R., Siqueira, G., Grieder, F., Kim, S. J., Giovanoli, D., Zimmermann, T., … Studart, A. R. (2023). 3D bioprinting of diatom-laden living materials for water quality assessment. Small, 19(50), 2300771 (13 pp.). https://doi.org/10.1002/smll.202300771
Nanocellulose-based porous materials: regulation and pathway to commercialization in regenerative medicine
Ferreira, F. V., Souza, A. G., Ajdary, R., de Souza, L. P., Lopes, J. H., Correa, D. S., … Rojas, O. J. (2023). Nanocellulose-based porous materials: regulation and pathway to commercialization in regenerative medicine. Bioactive Materials, 29, 151-176. https://doi.org/10.1016/j.bioactmat.2023.06.020
3D-printed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-cellulose-based scaffolds for biomedical applications
Giubilini, A., Messori, M., Bondioli, F., Minetola, P., Iuliano, L., Nyström, G., … Siqueira, G. (2023). 3D-printed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-cellulose-based scaffolds for biomedical applications. Biomacromolecules, 24(9), 3961-3971. https://doi.org/10.1021/acs.biomac.3c00263
Microscale 3D printing and tuning of cellulose nanocrystals reinforced polymer nanocomposites
Groetsch, A., Stelzl, S., Nagel, Y., Kochetkova, T., Scherrer, N. C., Ovsianikov, A., … Schwiedrzik, J. (2023). Microscale 3D printing and tuning of cellulose nanocrystals reinforced polymer nanocomposites. Small, 19(3), 2202470 (12 pp.). https://doi.org/10.1002/smll.202202470
Efficiency assessment of wood and cellulose-based optical elements for terahertz waves
Mavrona, E., Hu, Y., De Freitas Siqueira, G., Rüggeberg, M., Popov, S., Berglund, L. A., … Zolliker, P. (2023). Efficiency assessment of wood and cellulose-based optical elements for terahertz waves. Optical Materials Express, 13(1), 92-103. https://doi.org/10.1364/OME.477062
Anisotropic, strong, and thermally insulating 3D‐printed nanocellulose–PNIPAAM aerogels
Nagel, Y., Sivaraman, D., Neels, A., Zimmermann, T., Zhao, S., Siqueira, G., & Nyström, G. (2023). Anisotropic, strong, and thermally insulating 3D‐printed nanocellulose–PNIPAAM aerogels. Small Structures, 4(12), 2300073 (9 pp.). https://doi.org/10.1002/sstr.202300073
Plant-fiber and wood-based functional materials
Wimmer, R., Frey, M., Hausmann, M., Keplinger, T., Siqueira, G., & Zimmermann, T. (2023). Plant-fiber and wood-based functional materials. In P. Niemz, A. Teischinger, & D. Sandberg (Eds.), Springer handbooks. Springer handbook of wood science and technology (pp. 1645-1693). https://doi.org/10.1007/978-3-030-81315-4
3D printed polyimide nanocomposite aerogels for electromagnetic interference shielding and thermal management
Wu, T., Ganobjak, M., Siqueira, G., Zeng, Z., Li, M., Filimonova, E., … Zhao, S. (2023). 3D printed polyimide nanocomposite aerogels for electromagnetic interference shielding and thermal management. Advanced Materials Technologies, 8(14), 2202155 (9 pp.). https://doi.org/10.1002/admt.202202155
Printable polar silicone elastomers for healable supercapacitive strain sensors
von Szczepanski, J., Roels, E., Siqueira, G., Danner, P. M., Wolf, J., Legrand, J., … Opris, D. M. (2023). Printable polar silicone elastomers for healable supercapacitive strain sensors. Advanced Materials Technologies, 8(24), 2301310 (10 pp.). https://doi.org/10.1002/admt.202301310
Sustainable cellulose nanofiber films from carrot pomace as sprayable coatings for food packaging applications
Amoroso, L., De France, K. J., Milz, C. I., Siqueira, G., Zimmermann, T., & Nyström, G. (2022). Sustainable cellulose nanofiber films from carrot pomace as sprayable coatings for food packaging applications. ACS Sustainable Chemistry and Engineering, 10(1), 342-352. https://doi.org/10.1021/acssuschemeng.1c06345
Biomimetic light-driven aerogel passive pump for volatile organic pollutant removal
Drdova, S., Zhao, S., Giannakou, M., Sivaraman, D., Guerrero-Alburquerque, N., Bonnin, A., … Wang, J. (2022). Biomimetic light-driven aerogel passive pump for volatile organic pollutant removal. Advanced Science, 9(11), 2105819 (10 pp.). https://doi.org/10.1002/advs.202105819
Charged-cellulose nanofibrils as a nutrient carrier in biodegradable polymers for enhanced efficiency fertilizers
França, D., Siqueira, G., Nyström, G., Clemens, F., Fonseca Souza, C., & Faez, R. (2022). Charged-cellulose nanofibrils as a nutrient carrier in biodegradable polymers for enhanced efficiency fertilizers. Carbohydrate Polymers, 296, 119934 (12 pp.). https://doi.org/10.1016/j.carbpol.2022.119934
 

Pages