Active Filters

  • (-) Empa Authors = Siqueira, Gilberto
Search Results 1 - 20 of 28
Select Page
Nanocellulose-lysozyme colloidal gels via electrostatic complexation
Wu, T., Kummer, N., De France, K. J., Campioni, S., Zeng, Z., Siqueira, G., … Nyström, G. (2021). Nanocellulose-lysozyme colloidal gels via electrostatic complexation. Carbohydrate Polymers, 251, 117021 (9 pp.). https://doi.org/10.1016/j.carbpol.2020.117021
3D-printing nanocellulose-poly(3-hydroxybutyrate-<em>co</em>-3-hydroxyhexanoate) biodegradable composites by fused deposition modeling
Giubilini, A., Siqueira, G., Clemens, F. J., Sciancalepore, C., Messori, M., Nyström, G., & Bondioli, F. (2020). 3D-printing nanocellulose-poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biodegradable composites by fused deposition modeling. ACS Sustainable Chemistry and Engineering, 8(27), 10292-10302. https://doi.org/10.1021/acssuschemeng.0c03385
Cellulose-based microparticles for magnetically controlled optical modulation and sensing
Hausmann, M. K., Hauser, A., Siqueira, G., Libanori, R., Vehusheia, S. L., Schuerle, S., … Studart, A. R. (2020). Cellulose-based microparticles for magnetically controlled optical modulation and sensing. Small, 16(1), 1904251 (8 pp.). https://doi.org/10.1002/smll.201904251
Complex‐shaped cellulose composites made by wet densification of 3D printed scaffolds
Hausmann, M. K., Siqueira, G., Libanori, R., Kokkinis, D., Neels, A., Zimmermann, T., & Studart, A. R. (2020). Complex‐shaped cellulose composites made by wet densification of 3D printed scaffolds. Advanced Functional Materials, 30(4), 1904127 (11 pp.). https://doi.org/10.1002/adfm.201904127
Mechanical properties tailoring of 3D printed photoresponsive nanocellulose composites
Müller, L. A. E., Zimmermann, T., Nyström, G., Burgert, I., & Siqueira, G. (2020). Mechanical properties tailoring of 3D printed photoresponsive nanocellulose composites. Advanced Functional Materials, 30(35), 2002914 (9 pp.). https://doi.org/10.1002/adfm.202002914
Dual-porous cellulose nanofibril aerogels <em>via</em> modular drying and cross-linking
Wu, T., Zeng, Z., Siqueira, G., De France, K., Sivaraman, D., Schreiner, C., … Nyström, G. (2020). Dual-porous cellulose nanofibril aerogels via modular drying and cross-linking. Nanoscale, 12(13), 7383-7394. https://doi.org/10.1039/d0nr00860e
Nanocellulose assisted preparation of ambient dried, large-scale and mechanically robust carbon nanotube foams for electromagnetic interference shielding
Zeng, Z., Wang, C., Wu, T., Han, D., Luković, M., Pan, F., … Nyström, G. (2020). Nanocellulose assisted preparation of ambient dried, large-scale and mechanically robust carbon nanotube foams for electromagnetic interference shielding. Journal of Materials Chemistry A, 8(35), 17969-17979. https://doi.org/10.1039/D0TA05961G
Nanocellulose‐MXene biomimetic aerogels with orientation‐tunable electromagnetic interference shielding performance
Zeng, Z., Wang, C., Siqueira, G., Han, D., Huch, A., Abdolhosseinzadeh, S., … Nyström, G. (2020). Nanocellulose‐MXene biomimetic aerogels with orientation‐tunable electromagnetic interference shielding performance. Advanced Science, 2000979 (9 pp.). https://doi.org/10.1002/advs.202000979
Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding
Zeng, Z., Wu, T., Han, D., Ren, Q., Siqueira, G., & Nyström, G. (2020). Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding. ACS Nano, 14(3), 2927-2938. https://doi.org/10.1021/acsnano.9b07452
Additive manufacturing of silica aerogels
Zhao, S., Siqueira, G., Drdova, S., Norris, D., Ubert, C., Bonnin, A., … Malfait, W. J. (2020). Additive manufacturing of silica aerogels. Nature, 584(7821), 387-392. https://doi.org/10.1038/s41586-020-2594-0
3D printed disposable wireless ion sensors with biocompatible cellulose composites
Kim, T., Bao, C., Hausmann, M., Siqueira, G., Zimmermann, T., & Kim, W. S. (2019). 3D printed disposable wireless ion sensors with biocompatible cellulose composites. Advanced Electronic Materials, 5(2), 1800778 (7 pp.). https://doi.org/10.1002/aelm.201800778
Natural fibre-nanocellulose composite filters for the removal of heavy metal ions from water
Mautner, A., Kwaw, Y., Weiland, K., Mvubu, M., Botha, A., Jacob John, M., … Bismarck, A. (2019). Natural fibre-nanocellulose composite filters for the removal of heavy metal ions from water. Industrial Crops and Products, 133, 325-332. https://doi.org/10.1016/j.indcrop.2019.03.032
Three-dimensional stable alginate-nanocellulose gels for biomedical applications: Towards tunable mechanical properties and cell growing
Siqueira, P., Siqueira, É., de Lima, A. E., Siqueira, G., Pinzón-Garcia, A. D., Lopes, A. P., … Botaro, V. R. (2019). Three-dimensional stable alginate-nanocellulose gels for biomedical applications: Towards tunable mechanical properties and cell growing. Nanomaterials, 9(1), 78 (22 pp.). https://doi.org/10.3390/nano9010078
Tunable gas barrier properties of filled-PCL film by forming percolating cellulose network
Follain, N., Belbekhouche, S., Bras, J., Siqueira, G., Chappey, C., Marais, S., & Dufresne, A. (2018). Tunable gas barrier properties of filled-PCL film by forming percolating cellulose network. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 545, 26-30. https://doi.org/10.1016/j.colsurfa.2018.02.040
Dynamics of cellulose nanocrystal alignment during 3D printing
Hausmann, M. K., Rühs, P. A., Siqueira, G., Läuger, J., Libanori, R., Zimmermann, T., & Studart, A. R. (2018). Dynamics of cellulose nanocrystal alignment during 3D printing. ACS Nano, 12(7), 6926-6937. https://doi.org/10.1021/acsnano.8b02366
3D printing of strong lightweight cellular structures using polysaccharide-based composite foams
Voisin, H. P., Gordeyeva, K., Siqueira, G., Hausmann, M. K., Studart, A. R., & Bergström, L. (2018). 3D printing of strong lightweight cellular structures using polysaccharide-based composite foams. ACS Sustainable Chemistry and Engineering, 6(12), 17160-17167. https://doi.org/10.1021/acssuschemeng.8b04549
Enhanced antimicrobial activity and structural transitions of a nanofibrillated cellulose–nisin biocomposite suspension
Weishaupt, R., Heuberger, L., Siqueira, G., Gutt, B., Zimmermann, T., Maniura-Weber, K., … Faccio, G. (2018). Enhanced antimicrobial activity and structural transitions of a nanofibrillated cellulose–nisin biocomposite suspension. ACS Applied Materials and Interfaces, 10(23), 20170-20181. https://doi.org/10.1021/acsami.8b04470
Polyethylene cellulose nanofibrils nanocomposites
Silveira Maia, T. H., Larocca, N. M., Goncalves Beatrice, C. A., de Menezes, A. J., de Freitas Siqueira, G., Pessana, L. A., … de Almeida Lucas, A. (2017). Polyethylene cellulose nanofibrils nanocomposites. Carbohydrate Polymers, 173, 50-56. https://doi.org/10.1016/j.carbpol.2017.05.089
Cellulose nanocrystal inks for 3D printing of textured cellular architectures
Siqueira, G., Kokkinis, D., Libanori, R., Hausmann, M. K., Gladman, A. S., Neels, A., … Studart, A. R. (2017). Cellulose nanocrystal inks for 3D printing of textured cellular architectures. Advanced Functional Materials, 27(12), 1604619 (10 pp.). https://doi.org/10.1002/adfm.201604619
3D printing of nano-cellulosic biomaterials for medical applications
Sultan, S., Siqueira, G., Zimmermann, T., & Mathew, A. P. (2017). 3D printing of nano-cellulosic biomaterials for medical applications. Current Opinion in Biomedical Engineering, 2, 29-34. https://doi.org/10.1016/j.cobme.2017.06.002