Active Filters

  • (-) Empa Authors = Fu, Fan
  • (-) Keywords ≠ hydrogenated indium oxide
Search Results 1 - 20 of 55
Select Page
Pizza oven processing of organohalide perovskites (POPOP): a simple, versatile and efficient vapor deposition method
Guesnay, Q., Sahli, F., Artuk, K., Turkay, D., Kuba, A. G., Mrkyvkova, N., … Wolff, C. M. (2024). Pizza oven processing of organohalide perovskites (POPOP): a simple, versatile and efficient vapor deposition method. Advanced Energy Materials, 2303423 (11 pp.). https://doi.org/10.1002/aenm.202303423
Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests
Suo, J., Yang, B., Mosconi, E., Bogachuk, D., Doherty, T. A. S., Frohna, K., … Hagfeldt, A. (2024). Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests. Nature Energy. https://doi.org/10.1038/s41560-023-01421-6
FireDrone: multi-environment thermally agnostic aerial robot
Häusermann, D., Bodry, S., Wiesemüller, F., Miriyev, A., Siegrist, S., Fu, F., … Kovač, M. (2023). FireDrone: multi-environment thermally agnostic aerial robot. Advanced Intelligent Systems, 5(9), 2300101 (11 pp.). https://doi.org/10.1002/aisy.202300101
Revealing the role of tin fluoride additive in narrow bandgap Pb-Sn perovskites for highly efficient flexible all-perovskite tandem cells
Kurisinkal Pious, J., Zwirner, Y., Lai, H., Olthof, S., Jeangros, Q., Gilshtein, E., … Fu, F. (2023). Revealing the role of tin fluoride additive in narrow bandgap Pb-Sn perovskites for highly efficient flexible all-perovskite tandem cells. ACS Applied Materials and Interfaces, 15(7), 10151-10157. https://doi.org/10.1021/acsami.2c19124
Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells
Li, C., Wang, X., Bi, E., Jiang, F., Park, S. M., Li, Y., … Yan, Y. (2023). Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells. Science, 379(6633), 690-694. https://doi.org/10.1126/science.ade3970
29.9%-efficient, commercially viable perovskite/CuInSe<sub>2</sub> thin-film tandem solar cells
Liang, H., Feng, J., Rodríguez-Gallegos, C. D., Krause, M., Wang, X., Alvianto, E., … Hou, Y. (2023). 29.9%-efficient, commercially viable perovskite/CuInSe2 thin-film tandem solar cells. Joule, 7(12), 2859-2872. https://doi.org/10.1016/j.joule.2023.10.007
Multifunctional additive ethoxy(pentafluoro)cyclotriphosphazene enables safe carbonate electrolyte for SiO<em><sub>x</sub></em>-graphite/NMC811 batteries
Liu, S., Becker, M., Huang-Joos, Y., Lai, H., Homann, G., Grissa, R., … Kühnel, R. S. (2023). Multifunctional additive ethoxy(pentafluoro)cyclotriphosphazene enables safe carbonate electrolyte for SiOx-graphite/NMC811 batteries. Batteries and Supercaps, 6(7), e202300220 (10 pp.). https://doi.org/10.1002/batt.202300220
Improved carrier management via a multifunctional modifier for high-quality low-bandgap Sn–Pb perovskites and rfficient sll-perovskite tandem solar cells
Luo, J., He, R., Lai, H., Chen, C., Zhu, J., Xu, Y., … Zhao, D. (2023). Improved carrier management via a multifunctional modifier for high-quality low-bandgap Sn–Pb perovskites and rfficient sll-perovskite tandem solar cells. Advanced Materials, 35(22), 2300352 (11 pp.). https://doi.org/10.1002/adma.202300352
High-bandwidth perovskite photonic sources on silicon
Ren, A., Wang, H., Dai, L., Xia, J., Bai, X., Butler-Caddle, E., … Zhang, W. (2023). High-bandwidth perovskite photonic sources on silicon. Nature Photonics, 17, 798-805. https://doi.org/10.1038/s41566-023-01242-9
Understanding coating thickness and uniformity of blade-coated SnO<sub>2</sub> electron transport layer for scalable perovskite solar cells
Siegrist, S., Nandi, P., Kothandaraman, R. K., Abdessalem, A., Tiwari, A. N., & Fu, F. (2023). Understanding coating thickness and uniformity of blade-coated SnO2 electron transport layer for scalable perovskite solar cells. Solar RRL, 7(14), 2300273 (7 pp.). https://doi.org/10.1002/solr.202300273
Accounting for fabrication variability in transparent perovskite solar cells for four-terminal tandem applications
Tan, H. Q., Liang, H., Krause, M., Zhao, X., Kothandaraman, R., Carron, R., … Xue, H. (2023). Accounting for fabrication variability in transparent perovskite solar cells for four-terminal tandem applications. Solar RRL, 7(18), 2300339 (13 pp.). https://doi.org/10.1002/solr.202300339
Aging and characterization of high-bandgap perovskites for all thinfilm tandem solar cell devices
Vidani, A. C., Jenatsch, S., Kothandraman, R., Fu, F., Gadola, A., Zuefle, S., & Ruhstaller, B. (2023). Aging and characterization of high-bandgap perovskites for all thinfilm tandem solar cell devices. In G. Li, N. Stingelin, A. F. Nogueira, T. Q. Nguyen, E. Moons, & B. P. Rand (Eds.), Proceedings of SPIE - the international society for optical engineering: Vol. 12660. Organic, hybrid, and perovskite photovoltaics (p. 1266006 (9 pp.). https://doi.org/10.1117/12.2676914
Mismatch of quasi–fermi level splitting and V<sub>oc</sub> in perovskite solar cells
Warby, J., Shah, S., Thiesbrummel, J., Gutierrez-Partida, E., Lai, H., Alebachew, B., … Stolterfoht, M. (2023). Mismatch of quasi–fermi level splitting and Voc in perovskite solar cells. Advanced Energy Materials, 13(48), 2303135 (12 pp.). https://doi.org/10.1002/aenm.202303135
Resolving oxidation states and <em>X</em>–site composition of Sn perovskites through Auger parameter analysis in XPS
Wieczorek, A., Lai, H., Pious, J., Fu, F., & Siol, S. (2023). Resolving oxidation states and X–site composition of Sn perovskites through Auger parameter analysis in XPS. Advanced Materials Interfaces, 10(7), 2201828 (7 pp.). https://doi.org/10.1002/admi.202201828
Efficiency boost of bifacial Cu(In,Ga)Se<sub>2</sub> thin-film solar cells for flexible and tandem applications with silver-assisted low-temperature process
Yang, S. C., Lin, T. Y., Ochoa, M., Lai, H., Kothandaraman, R., Fu, F., … Carron, R. (2023). Efficiency boost of bifacial Cu(In,Ga)Se2 thin-film solar cells for flexible and tandem applications with silver-assisted low-temperature process. Nature Energy, 8, 40-51. https://doi.org/10.1038/s41560-022-01157-9
Green-antisolvent-regulated distribution of p-type self-doping enables tin perovskite solar cells with an efficiency of over 14%
Zhang, Z., Huang, Y., Wang, C., Jiang, Y., Jin, J., Xu, J., … Zhao, D. (2023). Green-antisolvent-regulated distribution of p-type self-doping enables tin perovskite solar cells with an efficiency of over 14%. Energy and Environmental Science, 16(8), 3430-3440. https://doi.org/10.1039/d3ee00601h
A donor–acceptor-type hole-selective contact reducing non-radiative recombination losses in both subcells towards efficient all-perovskite tandems
Zhu, J., Luo, Y., He, R., Chen, C., Wang, Y., Luo, J., … Zhao, D. (2023). A donor–acceptor-type hole-selective contact reducing non-radiative recombination losses in both subcells towards efficient all-perovskite tandems. Nature Energy, 8, 714-724. https://doi.org/10.1038/s41560-023-01274-z
Monolithic perovskite-silicon tandem solar cells: from the lab to fab?
Fu, F., Li, J., Yang, T. C. J., Liang, H., Faes, A., Jeangros, Q., … Hou, Y. (2022). Monolithic perovskite-silicon tandem solar cells: from the lab to fab? Advanced Materials, 34(24), 2106540 (23 pp.). https://doi.org/10.1002/adma.202106540
Pure 2D perovskite formation by interfacial engineering yields a high open-circuit voltage beyond 1.28 V for 1.77-eV wide-bandgap perovskite solar cells
He, R., Yi, Z., Luo, Y., Luo, J., Wei, Q., Lai, H., … Zhao, D. (2022). Pure 2D perovskite formation by interfacial engineering yields a high open-circuit voltage beyond 1.28 V for 1.77-eV wide-bandgap perovskite solar cells. Advanced Science, 9(36), 2203210 (11 pp.). https://doi.org/10.1002/advs.202203210
Dual-site passivation of tin-related defects enabling efficient lead-free tin perovskite solar cells
Jiang, Y., Lu, Z., Zou, S., Lai, H., Zhang, Z., Luo, J., … Zhao, D. (2022). Dual-site passivation of tin-related defects enabling efficient lead-free tin perovskite solar cells. Nano Energy, 103, 107818 (13 pp.). https://doi.org/10.1016/j.nanoen.2022.107818