Active Filters

  • (-) Empa Authors = Fumey, Benjamin
Search Results 1 - 20 of 24
Select Page
Seasonal energy flexibility through integration of liquid sorption storage in buildings
Baldini, L., & Fumey, B. (2020). Seasonal energy flexibility through integration of liquid sorption storage in buildings. Energies, 13(11), 2944 (13 pp.). https://doi.org/10.3390/en13112944
Water transport in aqueous sodium hydroxide films for liquid sorption heat storage
Fumey, B., Baldini, L., & Borgschulte, A. (2020). Water transport in aqueous sodium hydroxide films for liquid sorption heat storage. Energy Technology, 8(7), 2000187 (8 pp.). https://doi.org/10.1002/ente.202000187
Sorption based long-term thermal energy storage – process classification and analysis of performance limitations: a review
Fumey, B., Weber, R., & Baldini, L. (2019). Sorption based long-term thermal energy storage – process classification and analysis of performance limitations: a review. Renewable and Sustainable Energy Reviews, 111, 57-74. https://doi.org/10.1016/j.rser.2019.05.006
Ultra-low NO<sub>x</sub> emissions from catalytic hydrogen combustion
Fumey, B., Buetler, T., & Vogt, U. F. (2018). Ultra-low NOx emissions from catalytic hydrogen combustion. Applied Energy, 213, 334-342. https://doi.org/10.1016/j.apenergy.2018.01.042
Lab-scale alkaline water electrolyzer for bridging material fundamentals with realistic operation
Ju, W., Heinz, M. V. F., Pusterla, L., Hofer, M., Fumey, B., Castiglioni, R., … Vogt, U. F. (2018). Lab-scale alkaline water electrolyzer for bridging material fundamentals with realistic operation. ACS Sustainable Chemistry and Engineering, 6(4), 4829-4837. https://doi.org/10.1021/acssuschemeng.7b04173
Seasonal thermochemical energy storage: comparison of the experimental results with the modelling of the falling film tube bundle heat and mass exchanger unit
Daguenet-Frick, X., Gantenbein, P., Müller, J., Fumey, B., & Weber, R. (2017). Seasonal thermochemical energy storage: comparison of the experimental results with the modelling of the falling film tube bundle heat and mass exchanger unit. Renewable Energy, 110, 162-173. https://doi.org/10.1016/j.renene.2016.10.005
Cycling test of liquid sorption thermal energy storage using sodium hydroxide
Fumey, B., Weber, R., & Baldini, L. (2017). Cycling test of liquid sorption thermal energy storage using sodium hydroxide (p. (7 pp.). Presented at the International conference on solar heating and cooling for buildings and industry (SHC 2017). IEA.
Liquid sorption heat storage – a proof of concept based on lab measurements with a novel spiral fined heat and mass exchanger design
Fumey, B., Weber, R., & Baldini, L. (2017). Liquid sorption heat storage – a proof of concept based on lab measurements with a novel spiral fined heat and mass exchanger design. Applied Energy, 200, 215-225. https://doi.org/10.1016/j.apenergy.2017.05.056
TRNSYS simulation of a sodium hydroxide sorption storage system
Weber, R., Fumey, B., Moser, C., & Baldini, L. (2017). TRNSYS simulation of a sodium hydroxide sorption storage system (p. (6 pp.). Presented at the SOLARIS conference 2017. .
Absorption based seasonal thermal storage with sodium hydroxide, progress and outlook.
Fumey, B., Weber, R., Gantenbein, P., Daguenet-Frick, X., & Baldini, L. (2016). Absorption based seasonal thermal storage with sodium hydroxide, progress and outlook (p. (8 pp.). Presented at the 19. Status-Seminar «Forschen für den Bau im Kontext von Energie und Umwelt». brenet.
Absorption von Wasserdampf auf Natronlauge für saisonale Wärmespeicherung
Fumey, B. (2016). Absorption von Wasserdampf auf Natronlauge für saisonale Wärmespeicherung. Erneuerbare Energie (03) (5 pp.).
Development of a novel cooking stove based on catalytic hydrogen combustion
Fumey, B., Stoller, S., Fricker, R., Weber, R., Dorer, V., & Vogt, U. F. (2016). Development of a novel cooking stove based on catalytic hydrogen combustion. International Journal of Hydrogen Energy, 41(18), 7494-7499. https://doi.org/10.1016/j.ijhydene.2016.03.134
IEA SHC task 42 / ECES annex 29 - a simple tool for the economic evaluation of thermal energy storages
Rathgeber, C., Hiebler, S., Lävemann, E., Dolado, P., Lazaro, A., Gasia, J., … Hauer, A. (2016). IEA SHC task 42 / ECES annex 29 - a simple tool for the economic evaluation of thermal energy storages. In B. Yeşilata (Ed.), Energy procedia: Vol. 91. Proceedings of the 4th international conference on solar heating and cooling for buildings and industry (SHC 2015) (pp. 197-206). https://doi.org/10.1016/j.egypro.2016.06.203
IEA SHC task 42 / ECES annex 29 – working group B: applications of compact thermal energy storage
van Helden, W., Yamaha, M., Rathgeber, C., Hauer, A., Huaylla, F., Le Pierrès, N., … Kuznik, F. (2016). IEA SHC task 42 / ECES annex 29 – working group B: applications of compact thermal energy storage. In B. Yeşilata (Ed.), Energy procedia: Vol. 91. Proceedings of the 4th international conference on solar heating and cooling for buildings and industry (SHC 2015) (pp. 231-245). https://doi.org/10.1016/j.egypro.2016.06.210
Seasonal solar thermal absorption energy storage development
Daguenet-Frick, X., Gantenbein, P., Rommel, M., Fumey, B., Weber, R., Goonesekera, K., & Williamson, T. (2015). Seasonal solar thermal absorption energy storage development. Chimia, 69(12), 784-788. https://doi.org/10.2533/chimia.2015.784
Development of a numerical model for the reaction zone design of an aqueous sodium hydroxide seasonal thermal energy storage
Daguenet-Fricka, X., Gantenbein, P., Frank, E., Fumey, B., & Weber, R. (2015). Development of a numerical model for the reaction zone design of an aqueous sodium hydroxide seasonal thermal energy storage. Solar Energy, 121, 17-30. https://doi.org/10.1016/j.solener.2015.06.009
Limitations imposed on energy density of sorption materials in seasonal thermal storage systems
Fumey, B., Weber, R., Gantenbein, P., Daguenet-Frick, X., Hughes, I., & Dorer, V. (2015). Limitations imposed on energy density of sorption materials in seasonal thermal storage systems. In A. Häberle (Ed.), Energy procedia: Vol. 70. International conference on solar heating and cooling for buildings and industry, SHC 2014 (pp. 203-208). https://doi.org/10.1016/j.egypro.2015.02.116
Operation results of a closed sorption heat storage prototype
Fumey, B., Weber, R., Gantenbein, P., Daguenet-Frick, X., Stoller, S., Fricker, R., & Dorer, V. (2015). Operation results of a closed sorption heat storage prototype. In P. Droege (Ed.), Energy procedia: Vol. 73. 9th international renewable energy storage conference, IRES 2015 (pp. 324-330). https://doi.org/10.1016/j.egypro.2015.07.698
Performance of the absorption process in a seasonal sorption heat storage prototype
Fumey, B., Stoller, S., Fricker, R., Weber, R., Gantenbein, P., Daguenet-Frick, X., & Dorer, V. (2015). Performance of the absorption process in a seasonal sorption heat storage prototype. In Solar energy and building physics laboratory (LESO-PB) & Ecole Polytechnique Fédérale de Lausanne (EPFL) (Eds.), Vol. II. Proceedings of CISBAT 2015 (pp. 639-643). https://doi.org/10.5075/epfl-cisbat2015-639-644
Reaction zone development for an aqueous sodium hydroxide seasonal thermal energy storage
Daguenet-Frick, X., Gantenbein, P., Frank, E., Fumey, B., Weber, R., & Williamson, T. (2014). Reaction zone development for an aqueous sodium hydroxide seasonal thermal energy storage. In A. Lentz & D. Renné (Eds.), Energy procedia: Vol. 57. 2013 ISES solar world congress (pp. 2426-2435). https://doi.org/10.1016/j.egypro.2014.10.251