Active Filters

  • (-) Empa Authors = Geiger, Thomas
  • (-) Keywords ≠ molecular modelling
Search Results 1 - 20 of 58
Select Page
Degraded paper: stabilization and strengthening through nanocellulose application
Gmelch, L., D’Emilio, E. M. L., Geiger, T., & Effner, C. (2024). Degraded paper: stabilization and strengthening through nanocellulose application. Journal of Paper Conservation. https://doi.org/10.1080/18680860.2024.2317831
Printed circuit boards made from cellulose fibrils
Geiger, T., Geiger, C. K., Hoffmann, K. G., & Nyström, G. (2022). Printed circuit boards made from cellulose fibrils. In A. P. Vassilopoulos & V. Michaud (Eds.), Materials: Vol. 1. Proceedings of the 20th European conference on composite materials. Composite meet sustainability (pp. 1457-1464). Ecole Polytechnique Fédérale de Lausanne (EPFL).
High-strength boards made from industrially produced bacterial cellulose
Hoffmann, K. G., Nyström, G., & Geiger, T. (2022). High-strength boards made from industrially produced bacterial cellulose. In A. P. Vassilopoulos & V. Michaud (Eds.), Materials: Vol. 1. Proceedings of the 20th European conference on composite materials. Composite meet sustainability (pp. 750-757). Ecole Polytechnique Fédérale de Lausanne (EPFL).
Dielectric properties of 3-3 flexible composites by infiltration of elastomers into porous ceramic structures using cellulose scaffold
Levy, I. K., Owussu, F., Geiger, T., Clemmens, F., Nüesch, F., Opris, D. M., & Negri, R. M. (2022). Dielectric properties of 3-3 flexible composites by infiltration of elastomers into porous ceramic structures using cellulose scaffold. European Polymer Journal, 180, 111616 (10 pp.). https://doi.org/10.1016/j.eurpolymj.2022.111616
Production of microfibrillated cellulose fibers and their application in polymeric composites
Liu, M., Hoffmann, K. G., Geiger, T., & Nyström, G. (2022). Production of microfibrillated cellulose fibers and their application in polymeric composites. In R. Bhat, A. Kumar, T. Nguyen, & S. Sharma (Eds.), Nanotechnology in paper and wood engineering. Fundamentals, challenges and applications (pp. 197-229). https://doi.org/10.1016/B978-0-323-85835-9.00003-9
Hierarchical structure of cellulose nanofibril-based foams explored by multimodal X-ray scattering
Lutz-Bueno, V., Diaz, A., Wu, T., Nyström, G., Geiger, T., & Antonini, C. (2022). Hierarchical structure of cellulose nanofibril-based foams explored by multimodal X-ray scattering. Biomacromolecules, 23(3), 676-686. https://doi.org/10.1021/acs.biomac.1c00521
Self-sensing cellulose structures with design-controlled stiffness
Wiesemuller, F., Winston, C., Poulin, A., Aeby, X., Miriyev, A., Geiger, T., … Kovac, M. (2021). Self-sensing cellulose structures with design-controlled stiffness. IEEE Robotics and Automation Letters, 6(2), 4017-4024. https://doi.org/10.1109/LRA.2021.3067243
Dual physically and chemically crosslinked regenerated cellulose – gelatin composite hydrogels towards art restoration
De France, K. J., D'Emilio, E., Cranston, E. D., Geiger, T., & Nyström, G. (2020). Dual physically and chemically crosslinked regenerated cellulose – gelatin composite hydrogels towards art restoration. Carbohydrate Polymers, 234, 115885 (10 pp.). https://doi.org/10.1016/j.carbpol.2020.115885
Ultra-porous nanocellulose foams: a facile and scalable fabrication approach
Antonini, C., Wu, T., Zimmermann, T., Kherbeche, A., Thoraval, M. J., Nyström, G., & Geiger, T. (2019). Ultra-porous nanocellulose foams: a facile and scalable fabrication approach. Nanomaterials, 9(8), 1142 (14 pp.). https://doi.org/10.3390/nano9081142
Can cellulose beads save <em>the circling of the planets</em>? Cellulose-based consolidating filler to stabilise lifted brittle flakes on a large painting
Soppa, K., Hoess, A., Läuchli, M., Meyer, S., Geiger, T., Scherrer, N. C., … Haupt, T. (2019). Can cellulose beads save the circling of the planets? Cellulose-based consolidating filler to stabilise lifted brittle flakes on a large painting. In K. J. van den Berg, I. Bonaduce, A. Burnstock, B. Ormsby, M. Scharff, L. Carlyle, … K. Keune (Eds.), Conservation of modern oil paintings (pp. 597-606). https://doi.org/10.1007/978-3-030-19254-9_45
Improved mechanical properties of bitumen modified with acetylated cellulose fibers
Desseaux, S., dos Santos, S., Geiger, T., Tingaut, P., Zimmermann, T., Partl, M. N., & Poulikakos, L. D. (2018). Improved mechanical properties of bitumen modified with acetylated cellulose fibers. Composites Part B: Engineering, 140, 139-144. https://doi.org/10.1016/j.compositesb.2017.12.010
3D printing of cellulose by solvent on binder jetting
Soutrenon, M., Billato, G., Bircher, F., & Geiger, T. (2018). 3D printing of cellulose by solvent on binder jetting. In NIP & digital fabrication conference. Printing for fabrication 2018 (pp. 166-169). https://doi.org/10.2352/issn.2169-4451.2018.34.166
The chemical-free production of nanocelluloses from microcrystalline cellulose and their use as Pickering emulsion stabilizer
Buffiere, J., Balogh-Michels, Z., Borrega, M., Geiger, T., Zimmermann, T., & Sixta, H. (2017). The chemical-free production of nanocelluloses from microcrystalline cellulose and their use as Pickering emulsion stabilizer. Carbohydrate Polymers, 178, 48-56. https://doi.org/10.1016/j.carbpol.2017.09.028
Microfibrillated cellulose foams obtained by a straightforward freeze-thawing-drying procedure
Josset, S., Hansen, L., Orsolini, P., Griffa, M., Kuzior, O., Weisse, B., … Geiger, T. (2017). Microfibrillated cellulose foams obtained by a straightforward freeze-thawing-drying procedure. Cellulose, 24(9), 3825-3842. https://doi.org/10.1007/s10570-017-1377-8
Indium-free PTB7/PC<SUB>71</SUB>BM polymer solar cells with solution-processed Al:ZnO electrodes on PET substrates
Fuchs, P., Paracchino, A., Hagendorfer, H., Kranz, L., Geiger, T., Romanyuk, Y. E., … Nüesch, F. (2016). Indium-free PTB7/PC71BM polymer solar cells with solution-processed Al:ZnO electrodes on PET substrates. International Journal of Photoenergy, 2016, 2047591 (6 pp.). https://doi.org/10.1155/2016/2047591
Fibrillated cellulose in heterophase polymerization of nanoscale poly(methyl methacrylate) spheres
Grüneberger, F., Huch, A., Geiger, T., Zimmermann, T., & Tingaut, P. (2016). Fibrillated cellulose in heterophase polymerization of nanoscale poly(methyl methacrylate) spheres. Colloid and Polymer Science, 294(9), 1393-1403. https://doi.org/10.1007/s00396-016-3899-2
Nanofibrillated cellulose templated membranes with high permeance
Orsolini, P., D’Alvise, T. M., Boi, C., Geiger, T., Caseri, W. R., & Zimmermann, T. (2016). Nanofibrillated cellulose templated membranes with high permeance. ACS Applied Materials and Interfaces, 8(49), 33943-33954. https://doi.org/10.1021/acsami.6b12107
Influence of chemically p-type doped active organic semiconductor on the film thickness versus performance trend in cyanine/C&lt;sub&gt;60&lt;/sub&gt; bilayer solar cells
Jenatsch, S., Geiger, T., Heier, J., Kirsch, C., Nüesch, F., Paracchino, A., … Hany, R. (2015). Influence of chemically p-type doped active organic semiconductor on the film thickness versus performance trend in cyanine/C60 bilayer solar cells. Science and Technology of Advanced Materials, 16(3), 035003 (9 pp.). https://doi.org/10.1088/1468-6996/16/3/035003
Thiolate/disulfide based electrolytes for p-type and tandem dye-sensitized solar cells
Powar, S., Bhargava, R., Daeneke, T., Götz, G., Bäuerle, P., Geiger, T., … Bach, U. (2015). Thiolate/disulfide based electrolytes for p-type and tandem dye-sensitized solar cells. Electrochimica Acta, 182, 458-463. https://doi.org/10.1016/j.electacta.2015.09.026
Transparent silicone calcium fluoride nanocomposite with improved thermal conductivity
Schneider, R., Lüthi, S. R., Albrecht, K., Brülisauer, M., Bernard, A., & Geiger, T. (2015). Transparent silicone calcium fluoride nanocomposite with improved thermal conductivity. Macromolecular Materials and Engineering, 300(1), 80-85. https://doi.org/10.1002/mame.201400172