Active Filters

  • (-) Empa Authors = Griffiths, Seth
Search Results 1 - 14 of 14
  • RSS Feed
Select Page
A parametric neutron Bragg edge imaging study of additively manufactured samples treated by laser shock peening
Busi, M., Kalentics, N., Morgano, M., Griffiths, S., Tremsin, A. S., Shinohara, T., … Strobl, M. (2021). A parametric neutron Bragg edge imaging study of additively manufactured samples treated by laser shock peening. Scientific Reports, 11(1), 14919 (9 pp.). https://doi.org/10.1038/s41598-021-94455-3
Nondestructive characterization of laser powder bed fusion parts with neutron Bragg edge imaging
Busi, M., Kalentics, N., Morgano, M., Griffiths, S., Tremsin, A. S., Shinohara, T., … Strobl, M. (2021). Nondestructive characterization of laser powder bed fusion parts with neutron Bragg edge imaging. Additive Manufacturing, 39, 101848 (9 pp.). https://doi.org/10.1016/j.addma.2021.101848
Microstructure and defects in a Ni-Cr-Al-Ti γ/γ' model superalloy processed by laser powder bed fusion
De Luca, A., Kenel, C., Griffiths, S., Joglekar, S. S., Leinenbach, C., & Dunand, D. C. (2021). Microstructure and defects in a Ni-Cr-Al-Ti γ/γ' model superalloy processed by laser powder bed fusion. Materials and Design, 201, 109531 (14 pp.). https://doi.org/10.1016/j.matdes.2021.109531
Influence of Hf on the heat treatment response of additively manufactured Ni-base superalloy CM247LC
Griffiths, S., Ghasemi-Tabasi, H., De Luca, A., Pado, J., Joglekar, S. S., Jhabvala, J., … Leinenbach, C. (2021). Influence of Hf on the heat treatment response of additively manufactured Ni-base superalloy CM247LC. Materials Characterization, 171, 110815 (13 pp.). https://doi.org/10.1016/j.matchar.2020.110815
3D magnetic patterning in additive manufacturing via site-specific in-situ alloy modification
Arabi-Hashemi, A., Maeder, X., Figi, R., Schreiner, C., Griffiths, S., & Leinenbach, C. (2020). 3D magnetic patterning in additive manufacturing via site-specific in-situ alloy modification. Applied Materials Today, 18, 100512 (9 pp.). https://doi.org/10.1016/j.apmt.2019.100512
Coarsening- and creep resistance of precipitation-strengthened Al-Mg-Zr alloys processed by selective laser melting
Griffiths, S., Croteau, J. R., Rossell, M. D., Erni, R., De Luca, A., Vo, N. Q., … Leinenbach, C. (2020). Coarsening- and creep resistance of precipitation-strengthened Al-Mg-Zr alloys processed by selective laser melting. Acta Materialia, 188, 192-202. https://doi.org/10.1016/j.actamat.2020.02.008
Combining alloy and process modification for micro-crack mitigation in an additively manufactured Ni-base superalloy
Griffiths, S., Ghasemi Tabasi, H., Ivas, T., Maeder, X., De Luca, A., Zweiacker, K., … Leinenbach, C. (2020). Combining alloy and process modification for micro-crack mitigation in an additively manufactured Ni-base superalloy. Additive Manufacturing, 36, 101443 (15 pp.). https://doi.org/10.1016/j.addma.2020.101443
3D laser shock peening - a new method for improving fatigue properties of selective laser melted parts
Kalentics, N., Ortega Varela de Seijas, M., Griffiths, S., Leinenbach, C., & Logé, R. E. (2020). 3D laser shock peening - a new method for improving fatigue properties of selective laser melted parts. Additive Manufacturing, 33, 101112 (12 pp.). https://doi.org/10.1016/j.addma.2020.101112
Healing cracks in selective laser melting by 3D laser shock peening
Kalentics, N., Sohrabi, N., Tabasi, H. G., Griffiths, S., Jhabvala, J., Leinenbach, C., … Logé, R. E. (2019). Healing cracks in selective laser melting by 3D laser shock peening. Additive Manufacturing, 30, 100881 (10 pp.). https://doi.org/10.1016/j.addma.2019.100881
Computer-assisted screening of aluminum alloys for rapid solidification applications
Schuster, M., Grolimund, D., Sanchez, D., Zweiacker, K., Griffiths, S., De Luca, A., & Leinenbach, C. (2019). Computer-assisted screening of aluminum alloys for rapid solidification applications. Presented at the AAMS2019. Gothenburg, Sweden.
Influence of processing parameters on microstructure and crack formation during selective laser melting of a L1<sub>2 </sub>-strengthened Ni superalloy
Wróbel, R., Griffiths, S., & Leinenbach, C. (2019). Influence of processing parameters on microstructure and crack formation during selective laser melting of a L12 -strengthened Ni superalloy. Presented at the AAMS2019. Gothenburg, Sweden.
Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting
Croteau, J. R., Griffiths, S., Rossell, M. D., Leinenbach, C., Kenel, C., Jansen, V., … Vo, N. Q. (2018). Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting. Acta Materialia, 153, 35-44. https://doi.org/10.1016/j.actamat.2018.04.053
Effect of laser rescanning on the grain microstructure of a selective laser melted Al-Mg-Zr alloy
Griffiths, S., Rossell, M. D., Croteau, J., Vo, N. Q., Dunand, D. C., & Leinenbach, C. (2018). Effect of laser rescanning on the grain microstructure of a selective laser melted Al-Mg-Zr alloy. Materials Characterization, 143, 34-42. https://doi.org/10.1016/j.matchar.2018.03.033
Rapid solidification experiments with CM247LC
Griffiths, S., Wasyliszyn, M., & Leinenbach, C. (2017). Rapid solidification experiments with CM247LC. Presented at the Alloys for additive manufacturing symposium (AAMS) 2017. Dübendorf, Switzerland.