Active Filters

  • (-) Empa Laboratories = 207 Thin Films and Photovoltaics
  • (-) Keywords ≠ hydrotropy
  • (-) Empa Authors ≠ Kravchyk, Kostiantyn V.
Search Results 1 - 20 of 681

Pages

  • RSS Feed
Select Page
Antimony-doped tin oxide hole injection interlayer improving the efficiency of perovskite nanocrystal light emitting diodes
Ioakeimidis, A., Galatopoulos, F., Athanasiou, M., Hauser, A., Rossier, M., Bodnarchuk, M. I., … Choulis, S. A. (2024). Antimony-doped tin oxide hole injection interlayer improving the efficiency of perovskite nanocrystal light emitting diodes. ACS Applied Optical Materials, 2, 528-534. https://doi.org/10.1021/acsaom.4c00044
Disorder and halide distributions in cesium lead halide nanocrystals as seen by colloidal <sup>133</sup>Cs nuclear magnetic resonance spectroscopy
Aebli, M., Kaul, C. J., Yazdani, N., Krieg, F., Bernasconi, C., Guggisberg, D., … Kovalenko, M. V. (2023). Disorder and halide distributions in cesium lead halide nanocrystals as seen by colloidal 133Cs nuclear magnetic resonance spectroscopy. Chemistry of Materials, 36(6), 2599-3054. https://doi.org/10.1021/acs.chemmater.3c02901
All-perovskite multicomponent nanocrystal superlattices
Sekh, T. V., Cherniukh, I., Kobiyama, E., Sheehan, T. J., Manoli, A., Zhu, C., … Kovalenko, M. V. (2024). All-perovskite multicomponent nanocrystal superlattices. ACS Nano, 18(11), 8423-8436. https://doi.org/10.1021/acsnano.3c13062
Coherent carrier spin dynamics in FAPbBr<sub>3</sub> perovskite crystals
Kirstein, E., Zhukov, E. A., Yakovlev, D. R., Kopteva, N. E., Yalcin, E., Akimov, I. A., … Bayer, M. (2024). Coherent carrier spin dynamics in FAPbBr3 perovskite crystals. Journal of Physical Chemistry Letters, 15(10), 2893-2903. https://doi.org/10.1021/acs.jpclett.4c00098
Multiscale supercrystal meta-atoms
Tonkaev, P., Grechaninova, E., Iorsh, I., Montanarella, F., Kivshar, Y., Kovalenko, M. V., & Makarov, S. (2023). Multiscale supercrystal meta-atoms. Nano Letters, 24, 2758-2764. https://doi.org/10.1021/acs.nanolett.3c04580
Persistent enhancement of exciton diffusivity in CsPbBr<sub>3</sub> nanocrystal solids
Shcherbakov-Wu, W., Saris, S., Sheehan, T. J., Wong, N. N., Powers, E. R., Krieg, F., … Tisdale, W. A. (2024). Persistent enhancement of exciton diffusivity in CsPbBr3 nanocrystal solids. Science Advances, 10(8), eadj2630 (12 pp.). https://doi.org/10.1126/sciadv.adj2630
Narrow-band green-emitting hybrid organic–inorganic Eu (II)-iodides for next-generation micro-LED displays
Han, K., Jin, J., Zhou, X., Duan, Y., Kovalenko, M. V., & Xia, Z. (2024). Narrow-band green-emitting hybrid organic–inorganic Eu (II)-iodides for next-generation micro-LED displays. Advanced Materials. https://doi.org/10.1002/adma.202313247
Formation of electron traps in semiconducting polymers via a slow triple-encounter between trap precursor particles
Sedghi, M., Vael, C., Hu, W. H., Bauer, M., Padula, D., Landi, A., … Hany, R. (2024). Formation of electron traps in semiconducting polymers via a slow triple-encounter between trap precursor particles. Science and Technology of Advanced Materials, 25(1), 2312148 (9 pp.). https://doi.org/10.1080/14686996.2024.2312148
A universal perovskite/C60 interface modification via atomic layer deposited aluminum oxide for perovskite solar cells and perovskite–silicon tandems
Artuk, K., Turkay, D., Mensi, M. D., Steele, J. A., Jacobs, D. A., Othman, M., … Wolff, C. M. (2024). A universal perovskite/C60 interface modification via atomic layer deposited aluminum oxide for perovskite solar cells and perovskite–silicon tandems. Advanced Materials. https://doi.org/10.1002/adma.202311745
Colloidal aziridinium lead bromide quantum dots
Bodnarchuk, M. I., Feld, L. G., Zhu, C., Boehme, S. C., Bertolotti, F., Avaro, J., … Kovalenko, M. V. (2024). Colloidal aziridinium lead bromide quantum dots. ACS Nano, 18, 5684-5697. https://doi.org/10.1021/acsnano.3c11579
Strong light-matter coupling in lead halide perovskite quantum dot solids
Bujalance, C., Caliò, L., Dirin, D. N., Tiede, D. O., Galisteo-López, J. F., Feist, J., … Míguez, H. (2024). Strong light-matter coupling in lead halide perovskite quantum dot solids. ACS Nano, 18(6), 4922-4931. https://doi.org/10.1021/acsnano.3c10358
Designer phospholipid capping ligands for soft metal halide nanocrystals
Morad, V., Stelmakh, A., Svyrydenko, M., Feld, L. G., Boehme, S. C., Aebli, M., … Kovalenko, M. V. (2024). Designer phospholipid capping ligands for soft metal halide nanocrystals. Nature, 626, 542-548. https://doi.org/10.1038/s41586-023-06932-6
Dark-Bright exciton splitting dominates low-temperature diffusion in halide perovskite nanocrystal assemblies
Bornschlegl, A. J., Lichtenegger, M. F., Luber, L., Lampe, C., Bodnarchuk, M. I., Kovalenko, M. V., & Urban, A. S. (2024). Dark-Bright exciton splitting dominates low-temperature diffusion in halide perovskite nanocrystal assemblies. Advanced Energy Materials. https://doi.org/10.1002/aenm.202303312
Hysteresis and its correlation to ionic defects in perovskite solar cells
Tammireddy, S., Lintangpradipto, M. N., Telschow, O., Futscher, M. H., Ehrler, B., Bakr, O. M., … Deibel, C. (2024). Hysteresis and its correlation to ionic defects in perovskite solar cells. Journal of Physical Chemistry Letters, 15(5), 1363-1372. https://doi.org/10.1021/acs.jpclett.3c03146
Electrochemical activation of Fe-LiF conversion cathodes in thin-film solid-state batteries
Casella, J., Morzy, J., Gilshtein, E., Yarema, M., Futscher, M. H., & Romanyuk, Y. E. (2024). Electrochemical activation of Fe-LiF conversion cathodes in thin-film solid-state batteries. ACS Nano, 18(5), 4352-4359. https://doi.org/10.1021/acsnano.3c10146
Pizza oven processing of organohalide perovskites (POPOP): a simple, versatile and efficient vapor deposition method
Guesnay, Q., Sahli, F., Artuk, K., Turkay, D., Kuba, A. G., Mrkyvkova, N., … Wolff, C. M. (2024). Pizza oven processing of organohalide perovskites (POPOP): a simple, versatile and efficient vapor deposition method. Advanced Energy Materials, 2303423 (11 pp.). https://doi.org/10.1002/aenm.202303423
Single-photon superradiance in individual caesium lead halide quantum dots
Zhu, C., Boehme, S. C., Feld, L. G., Moskalenko, A., Dirin, D. N., Mahrt, R. F., … Rainò, G. (2024). Single-photon superradiance in individual caesium lead halide quantum dots. Nature, 626, 535-541. https://doi.org/10.1038/s41586-023-07001-8
Quantifying the size-ddependent exciton-phonon coupling strength in single lead-halide perovskite quantum dots
Zhu, C., Feld, L. G., Svyrydenko, M., Cherniukh, I., Dirin, D. N., Bodnarchuk, M. I., … Rainò, G. (2024). Quantifying the size-ddependent exciton-phonon coupling strength in single lead-halide perovskite quantum dots. Advanced Optical Materials. https://doi.org/10.1002/adom.202301534
Chemistry in Ukraine
Grygorenko, O. O., Lampeka, R. D., Chebanov, V. A., Kovalenko, M. V., & Wuttke, S. (2024). Chemistry in Ukraine. The Chemical Record, 24(2), e202400008 (5 pp.). https://doi.org/10.1002/tcr.202400008
Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests
Suo, J., Yang, B., Mosconi, E., Bogachuk, D., Doherty, T. A. S., Frohna, K., … Hagfeldt, A. (2024). Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests. Nature Energy. https://doi.org/10.1038/s41560-023-01421-6
 

Pages