Active Filters

  • (-) Empa Laboratories = 207 Thin Films and Photovoltaics
  • (-) Keywords ≠ perovskites
  • (-) Keywords = photoluminescence
Search Results 1 - 15 of 15
  • RSS Feed
Select Page
Colloidal aziridinium lead bromide quantum dots
Bodnarchuk, M. I., Feld, L. G., Zhu, C., Boehme, S. C., Bertolotti, F., Avaro, J., … Kovalenko, M. V. (2024). Colloidal aziridinium lead bromide quantum dots. ACS Nano, 18, 5684-5697. https://doi.org/10.1021/acsnano.3c11579
The impact of ligand removal on the optoelectronic properties of inorganic and hybrid lead halide perovskite nanocrystal films
Papagiorgis, P., Sergides, M., Manoli, A., Athanasiou, M., Bernasconi, C., Galatopoulos, F., … Itskos, G. (2024). The impact of ligand removal on the optoelectronic properties of inorganic and hybrid lead halide perovskite nanocrystal films. Advanced Optical Materials, 12(3), 2301501 (13 pp.). https://doi.org/10.1002/adom.202301501
Hot excitons cool in metal halide perovskite nanocrystals as fast as CdSe nanocrystals
Strandell, D. P., Zenatti, D., Nagpal, P., Ghosh, A., Dirin, D. N., Kovalenko, M. V., & Kambhampati, P. (2024). Hot excitons cool in metal halide perovskite nanocrystals as fast as CdSe nanocrystals. ACS Nano, 18(1), 1054-1062. https://doi.org/10.1021/acsnano.3c10301
Enhancing multiexcitonic emission in metal-halide perovskites by quantum confinement
Strandell, D., Dirin, D., Zenatti, D., Nagpal, P., Ghosh, A., Raino, G., … Kambhampati, P. (2023). Enhancing multiexcitonic emission in metal-halide perovskites by quantum confinement. ACS Nano, 17(24), 24910-24918. https://doi.org/10.1021/acsnano.3c06497
Compositional variation in FAPb<sub>1- x</sub>Sn<sub>x</sub>I<sub>3</sub>and its impact on the electronic structure: a combined density functional theory and experimental study
Kahmann, S., Chen, Z., Hordiichuk, O., Nazarenko, O., Shao, S., Kovalenko, M. V., … Loi, M. A. (2022). Compositional variation in FAPb1- xSnxI3and its impact on the electronic structure: a combined density functional theory and experimental study. ACS Applied Materials and Interfaces, 14(30), 34253-34261. https://doi.org/10.1021/acsami.2c00889
Influence of the rear interface on composition and photoluminescence yield of CZTSSe absorbers: a case for an Al<sub>2</sub>O<sub>3</sub> intermediate layer
Cabas-Vidani, A., Choubrac, L., Márquez, J. A., Unold, T., Maiberg, M., Scheer, R., … Romanyuk, Y. E. (2021). Influence of the rear interface on composition and photoluminescence yield of CZTSSe absorbers: a case for an Al2O3 intermediate layer. ACS Applied Materials and Interfaces, 13(16), 19487-19496. https://doi.org/10.1021/acsami.1c02437
Expanding the 0D Rb&lt;sub&gt;7&lt;/sub&gt;M&lt;sub&gt;3&lt;/sub&gt;X&lt;sub&gt;16&lt;/sub&gt; (M=Sb, Bi; X=Br, I) family: dual-band luminescence in Rb&lt;sub&gt;7&lt;/sub&gt;Sb&lt;sub&gt;3&lt;/sub&gt;Br&lt;sub&gt;16&lt;/sub&gt;
McCall, K. M., Benin, B. M., Wörle, M., Vonderach, T., Günther, D., & Kovalenko, M. V. (2020). Expanding the 0D Rb7M3X16 (M=Sb, Bi; X=Br, I) family: dual-band luminescence in Rb7Sb3Br16. Helvetica Chimica Acta, 103, e2000206 (11 pp.). https://doi.org/10.1002/hlca.202000206
Hybrid metal halides with multiple photoluminescence centers
Li, M., Zhou, J., Zhou, G., Molokeev, M. S., Zhao, J., Morad, V., … Xia, Z. (2019). Hybrid metal halides with multiple photoluminescence centers. Angewandte Chemie International Edition, 58(51), 18670-18675. https://doi.org/10.1002/anie.201911419
Impact of crystal structure and particles shape on the photoluminescence intensity of CdSe/CdS Core/shell nanocrystals
Ludescher, L., Dirin, D. N., Kovalenko, M. V., Sztucki, M., Boesecke, P., & Lechner, R. T. (2019). Impact of crystal structure and particles shape on the photoluminescence intensity of CdSe/CdS Core/shell nanocrystals. Frontiers in Chemistry, 6, 672 (11 pp.). https://doi.org/10.3389/fchem.2018.00672
Low-cost synthesis of highly luminescent colloidal lead halide perovskite nanocrystals by wet ball milling
Protesescu, L., Yakunin, S., Nazarenko, O., Dirin, D. N., & Kovalenko, M. V. (2018). Low-cost synthesis of highly luminescent colloidal lead halide perovskite nanocrystals by wet ball milling. ACS Applied Nano Materials, 1(3), 1300-1308. https://doi.org/10.1021/acsanm.8b00038
Correcting for interference effects in the photoluminescence of Cu(In,Ga)Se<sub>2</sub> thin films
Wolter, M. H., Bissig, B., Reinhard, P., Buecheler, S., Jackson, P., & Siebentritt, S. (2017). Correcting for interference effects in the photoluminescence of Cu(In,Ga)Se2 thin films. Physica Status Solidi C: Current Topics in Solid State Physics, 14(6), 1600189 (4 pp.). https://doi.org/10.1002/pssc.201600189
Air-stable, near- to mid-infrared emitting solids of PbTe/CdTe core-shell colloidal quantum dots
Protesescu, L., Zünd, T., Bodnarchuk, M. I., & Kovalenko, M. V. (2016). Air-stable, near- to mid-infrared emitting solids of PbTe/CdTe core-shell colloidal quantum dots. ChemPhysChem, 17(5), 670-674. https://doi.org/10.1002/cphc.201501008
Influence of an Sb doping layer in CIGS thin-film solar cells: a photoluminescence study
Van Puyvelde, L., Lauwaert, J., Pianezzi, F., Nishiwaki, S., Smet, P. F., Poelman, D., … Vrielinck, H. (2014). Influence of an Sb doping layer in CIGS thin-film solar cells: a photoluminescence study. Journal of Physics D: Applied Physics, 47(4), 045102 (8 pp.). https://doi.org/10.1088/0022-3727/47/4/045102
Optimisation of luminescent EVA encapsulation layers for increasing the short-wavelength response of PV modules
Klampaftis, E., Ross, D., Seyrling, S., Tiwari, A. N., & Richards, B. S. (2011). Optimisation of luminescent EVA encapsulation layers for increasing the short-wavelength response of PV modules (p. 5 pp.). Presented at the 26th european photovoltaic solar energy conference and exhibition (EU PVSEC). WIP Renewable Energies.
Er&lt;sup&gt;3+&lt;/sup&gt; luminescence as a sensor of high pressure and strong external magnetic fields
Valiente, R., Millot, M., Rodríguez, F., González, J., Broto, J. M., George, S., … Pollnau, M. (2009). Er3+ luminescence as a sensor of high pressure and strong external magnetic fields. High Pressure Research, 29(4), 748-753. https://doi.org/10.1080/08957950903371716