Active Filters

  • (-) Empa Laboratories = 207 Thin Films and Photovoltaics
  • (-) Publication Year = 2009 - 2018
  • (-) Journal ≠ Advanced Energy Materials
  • (-) Empa Authors = Uhl, Alexander R.
Search Results 1 - 20 of 21
Select Page
All solution-processed chalcogenide solar cells – from single functional layers towards a 13.8% efficient CIGS device
Romanyuk, Y. E., Hagendorfer, H., Stücheli, P., Fuchs, P., Uhl, A. R., Sutter-Fella, C. M., … Tiwari, A. N. (2015). All solution-processed chalcogenide solar cells – from single functional layers towards a 13.8% efficient CIGS device. Advanced Functional Materials, 25(1), 12-27. https://doi.org/10.1002/adfm.201402288
Large-grained Cu<SUB>2</SUB>ZnSnS<SUB>4</SUB> layers sintered from Sn-rich solution-deposited precursors
Sutter-Fella, C. M., Uhl, A. R., Romanyuk, Y. E., & Tiwari, A. N. (2015). Large-grained Cu2ZnSnS4 layers sintered from Sn-rich solution-deposited precursors. Physica Status Solidi A: Applications and Materials, 212(1), 121-125. https://doi.org/10.1002/pssa.201431147
Liquid-selenium-enhanced grain growth of nanoparticle precursor layers for CuInSe<SUB>2</SUB> solar cell absorbers
Uhl, A. R., Fuchs, P., Rieger, A., Pianezzi, F., Sutter-Fella, C. M., Kranz, L., … Tiwari, A. N. (2015). Liquid-selenium-enhanced grain growth of nanoparticle precursor layers for CuInSe2 solar cell absorbers. Progress in Photovoltaics, 23(9), 1110-1119. https://doi.org/10.1002/pip.2529
Highly transparent and conductive ZnO: al thin films from a low temperature Aqueous solution approach
Hagendorfer, H., Lienau, K., Nishiwaki, S., Fella, C. M., Kranz, L., Uhl, A. R., … Tiwari, A. N. (2014). Highly transparent and conductive ZnO: al thin films from a low temperature Aqueous solution approach. Advanced Materials, 26(4), 632-636. https://doi.org/10.1002/adma.201303186
Sodium assisted sintering of chalcogenides and its application to solution processed Cu<SUB>2</SUB>ZnSn(S,Se)<SUB>4</SUB> thin film solar cells
Sutter-Fella, C. M., Stückelberger, J. A., Hagendorfer, H., La Mattina, F., Kranz, L., Nishiwaki, S., … Tiwari, A. N. (2014). Sodium assisted sintering of chalcogenides and its application to solution processed Cu2ZnSn(S,Se)4 thin film solar cells. Chemistry of Materials, 26(3), 1420-1425. https://doi.org/10.1021/cm403504u
Potassium-induced surface modification of Cu(In,Ga)Se<SUB>2</SUB> thin films for high-efficiency solar cells
Chirilă, A., Reinhard, P., Pianezzi, F., Bloesch, P., Uhl, A. R., Fella, C., … Tiwari, A. N. (2013). Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. Nature Materials, 12(12), 1107-1111. https://doi.org/10.1038/nmat3789
Formation mechanism of Cu<SUB>2</SUB>ZnSnSe<SUB>4</SUB> absorber layers during selenization of solution deposited metal precursors
Fella, C. M., Uhl, A. R., Hammond, C., Hermans, I., Romanyuk, Y. E., & Tiwari, A. N. (2013). Formation mechanism of Cu2ZnSnSe4 absorber layers during selenization of solution deposited metal precursors. Journal of Alloys and Compounds, 567, 102-106. https://doi.org/10.1016/j.jallcom.2013.03.056
Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil
Kranz, L., Gretener, C., Perrenoud, J., Schmitt, R., Pianezzi, F., La Mattina, F., … Tiwari, A. N. (2013). Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil. Nature Communications, 4, 2306 (7 pp.). https://doi.org/10.1038/ncomms3306
Progress towards 14% efficient CdTe solar cells in substrate configuration
Kranz, L., Schmitt, R., Gretener, C., Perrenoud, J., Pianezzi, F., Uhl, A. R., … Tiwari, A. N. (2013). Progress towards 14% efficient CdTe solar cells in substrate configuration. In Conference record of the IEEE photovoltaic specialists conference. 2013 39th IEEE Photovoltaic Specialists Conference (PVSC) (pp. 1644-1648). https://doi.org/10.1109/PVSC.2013.6744460
Recent trends in direct solution coating of kesterite absorber layers in solar cells
Romanyuk, Y. E., Fella, C. M., Uhl, A. R., Werner, M., Tiwari, A. N., Schnabel, T., & Ahlswede, E. (2013). Recent trends in direct solution coating of kesterite absorber layers in solar cells. Solar Energy Materials and Solar Cells, 119, 181-189. https://doi.org/10.1016/j.solmat.2013.06.038
Cu(In,Ga)Se<SUB>2</SUB> absorbers from stacked nanoparticle precursor layers
Uhl, A. R., Koller, M., Wallerand, A. S., Fella, C. M., Kranz, L., Hagendorfer, H., … Stassin, F. (2013). Cu(In,Ga)Se2 absorbers from stacked nanoparticle precursor layers. Thin Solid Films, 535, 138-142. https://doi.org/10.1016/j.tsf.2012.12.096
Cu<SUB>2</SUB>ZnSnSe<SUB>4</SUB> absorbers processed from solution deposited metal salt precursors under different selenization conditions
Fella, C. M., Uhl, A. R., Romanyuk, Y. E., & Tiwari, A. N. (2012). Cu2ZnSnSe4 absorbers processed from solution deposited metal salt precursors under different selenization conditions. Physica Status Solidi A: Applications and Materials, 209(6), 1043-1048. https://doi.org/10.1002/pssa.201228003
Cu<SUB>2</SUB>ZnSnSe<SUB>4</SUB> solar cell absorbers spin-coated from amine-containing ether solutions
Ilari, G. M., Fella, C. M., Ziegler, C., Uhl, A. R., Romanyuk, Y. E., & Tiwari, A. N. (2012). Cu2ZnSnSe4 solar cell absorbers spin-coated from amine-containing ether solutions. Solar Energy Materials and Solar Cells, 104, 125-130. https://doi.org/10.1016/j.solmat.2012.05.004
Non-vacuum deposition of Cu(In,Ga)Se<small><sub>2</sub></small> absorber layers from binder free, alcohol solutions
Uhl, A. R., Fella, C., Chirilă, A., Kaelin, M. R., Karvonen, L., Weidenkaff, A., … Tiwari, A. N. (2012). Non-vacuum deposition of Cu(In,Ga)Se2 absorber layers from binder free, alcohol solutions. Progress in Photovoltaics, 20(5), 526-533. https://doi.org/10.1002/pip.1246
Selenization of nanoparticle precursor layers for Cu(In,Ga)Se<sub>2</sub> absorbers
Uhl, A. R., Wallerand, A. S., Koller, M., Fella, C. M., Romanyuk, Y. E., Tiwari, A. N., … Stassin, F. (2012). Selenization of nanoparticle precursor layers for Cu(In,Ga)Se2 absorbers. In EU PVSEC 2012 proceedings (pp. 2318-2320). https://doi.org/10.4229/27thEUPVSEC2012-3CV.1.36
Cu(In,Ga)Se<SUB>2</SUB> solar cell grown on flexible polymer substrate with efficiency exceeding 17%
Chirilǎ, A., Bloesch, P., Seyrling, S., Uhl, A., Buecheler, S., Pianezzi, F., … Tiwari, A. N. (2011). Cu(In,Ga)Se2 solar cell grown on flexible polymer substrate with efficiency exceeding 17%. Progress in Photovoltaics, 19(5), 560-564. https://doi.org/10.1002/pip.1077
Highly efficient Cu(In,Ga)Se<SUB>2</SUB> solar cells grown on flexible polymer films
Chirilǎ, A., Buecheler, S., Pianezzi, F., Bloesch, P., Gretener, C., Uhl, A. R., … Tiwari, A. N. (2011). Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films. Nature Materials, 10(11), 857-861. https://doi.org/10.1038/nmat3122
Na distribution in CIGS solar cells grown with modified three stage processes
Seyrling, S., Chirila, A., Güttler, D., Blösch, P., Pianezzi, F., Bücheler, S., … Tiwari, A. N. (2011). Na distribution in CIGS solar cells grown with modified three stage processes. In Conference record of the IEEE photovoltaic specialists conference. 2011 37th IEEE Photovoltaic Specialists Conference (PVSC) (p. 6186458 (4 pp.). https://doi.org/10.1109/PVSC.2011.6186458
Thin film Cu(In,Ga)Se<SUB>2</SUB> solar cells processed from solution pastes with polymethyl methacrylate binder
Uhl, A. R., Romanyuk, Y. E., & Tiwari, A. N. (2011). Thin film Cu(In,Ga)Se2 solar cells processed from solution pastes with polymethyl methacrylate binder. Thin Solid Films, 519(21), 7259-7263. https://doi.org/10.1016/j.tsf.2011.01.136
Progress towards the development of 18% efficiency flexible CIGS solar cells on polymer film
Chirilă, A., Bloesch, P., Uhl, A., Seyrling, S., Pianezzi, F., Buecheler, S., … Tiwari, A. N. (2010). Progress towards the development of 18% efficiency flexible CIGS solar cells on polymer film (pp. 3403-3405). Presented at the 25th European Photovoltaic Solar Energy Conference and Exhibition (25th EU PVSEC); 5th World Conference on Photovoltaic Energy Conversion (WCPEC-5). https://doi.org/10.4229/25thEUPVSEC2010-3BV.2.68