Active Filters

  • (-) Empa Laboratories = 207 Thin Films and Photovoltaics
  • (-) Publication Year = 2009 - 2018
  • (-) Full Text = Restricted
  • (-) Keywords ≠ kesterite
Search Results 1 - 20 of 152

Pages

  • RSS Feed
Select Page
Development of the lattice matched GaInP/GaInAs/Ge triple junction solar cell with an efficiency over 40%
Barrutia, L., García, I., Barrigón, E., Ochoa, M., Lombardero, I., Hinojosa, M., … Algora, C. (2018). Development of the lattice matched GaInP/GaInAs/Ge triple junction solar cell with an efficiency over 40%. In J. Mateos & T. González (Eds.), 2018 Spanish conference on electron devices (CDE 2018) (p. (4 pp.). https://doi.org/10.1109/CDE.2018.8596996
Dictating anisotropic electric conductivity of a transparent copper nanowire coating by the surface structure of wood
Guo, H., Büchel, M., Li, X., Wäckerlin, A., Chen, Q., & Burgert, I. (2018). Dictating anisotropic electric conductivity of a transparent copper nanowire coating by the surface structure of wood. Journal of the Royal Society Interface, 15(142), 20170864 (9 pp.). https://doi.org/10.1098/rsif.2017.0864
Size-dependent fault-driven relaxation and faceting in zincblende CdSe colloidal quantum dots
Moscheni, D., Bertolotti, F., Piveteau, L., Protesescu, L., Dirin, D. N., Kovalenko, M. V., … Guagliardi, A. (2018). Size-dependent fault-driven relaxation and faceting in zincblende CdSe colloidal quantum dots. ACS Nano, 12(12), 12558-12570. https://doi.org/10.1021/acsnano.8b07092
Operation by optoelectronic features of cadmium sulphide nanocrystallites embedded into the photopolymer polyvinyl alcohol matrices
Ozga, K., Yanchuk, O. M., Tsurkova, L. V., Marchuk, O. V., Urubkov, I. V., Romanyuk, Y. E., … Kityk, I. V. (2018). Operation by optoelectronic features of cadmium sulphide nanocrystallites embedded into the photopolymer polyvinyl alcohol matrices. Applied Surface Science, 446, 209-214. https://doi.org/10.1016/j.apsusc.2018.01.164
Epitaxial thin films as a model system for Li-Ion conductivity in Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>
Pagani, F., Stilp, E., Pfenninger, R., Reyes, E. C., Remhof, A., Balogh-Michels, Z., … Battaglia, C. (2018). Epitaxial thin films as a model system for Li-Ion conductivity in Li4Ti5O12. ACS Applied Materials and Interfaces, 10(51), 44494-44500. https://doi.org/10.1021/acsami.8b16519
Interpretation of admittance signatures in Cu(In,Ga)Se<sub>2</sub> solar cells
Sozzi, G., Di Napoli, S., Menozzi, R., Weiss, T. P., Buecheler, S., & Tiwari, A. N. (2018). Interpretation of admittance signatures in Cu(In,Ga)Se2 solar cells. In 2018 IEEE 7th world conference on photovoltaic energy conversion (WCPEC-7) (A joint conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC) (pp. 2515-2519). https://doi.org/10.1109/PVSC.2018.8547296
A direct measurement of higher photovoltage at grain boundaries in CdS/ CZTSe solar cells using KPFM technique
Vishwakarma, M., Varandani, D., Andres, C., Romanyuk, Y. E., Haass, S. G., Tiwari, A. N., & Mehta, B. R. (2018). A direct measurement of higher photovoltage at grain boundaries in CdS/ CZTSe solar cells using KPFM technique. Solar Energy Materials and Solar Cells, 183, 34-40. https://doi.org/10.1016/j.solmat.2018.01.040
Innovation highway: Breakthrough milestones and key developments in chalcopyrite photovoltaics from a retrospective viewpoint
Abou-Ras, D., Wagner, S., Stanbery, B. J., Schock, H. W., Scheer, R., Stolt, L., … Tiwari, A. N. (2017). Innovation highway: Breakthrough milestones and key developments in chalcopyrite photovoltaics from a retrospective viewpoint. Thin Solid Films, 633, 2-12. https://doi.org/10.1016/j.tsf.2017.01.005
Morphology and topography of perovskite solar cell films ablated and scribed with short and ultrashort laser pulses
Bayer, L., Ehrhardt, M., Lorenz, P., Pisoni, S., Buecheler, S., Tiwari, A. N., & Zimmer, K. (2017). Morphology and topography of perovskite solar cell films ablated and scribed with short and ultrashort laser pulses. Applied Surface Science, 416, 112-117. https://doi.org/10.1016/j.apsusc.2017.04.058
Tuning branching in ceria nanocrystals
Berestok, T., Guardia, P., Blanco, J., Nafria, R., Torruella, P., López-Conesa, L., … Cabot, A. (2017). Tuning branching in ceria nanocrystals. Chemistry of Materials, 29(10), 4418-4424. https://doi.org/10.1021/acs.chemmater.7b00896
Resistivity transients in solution-processed transparent ZnO thin films as a function of UV illumination wavelength
Fuchs, P., Steinhauser, J., Romanyuk, Y. E., & Tiwari, A. N. (2017). Resistivity transients in solution-processed transparent ZnO thin films as a function of UV illumination wavelength. Physica Status Solidi A: Applications and Materials, 214(6), 1600853 (6 pp.). https://doi.org/10.1002/pssa.201600853
Nondestructive raman scattering assessment of solution-processed ZnO-doped layers for photovoltaic applications
Guc, M., Tsin, F., Rousset, J., Romanyuk, Y. E., Izquierdo-Roca, V., & Pérez-Rodríguez, A. (2017). Nondestructive raman scattering assessment of solution-processed ZnO-doped layers for photovoltaic applications. Journal of Physical Chemistry C, 121(6), 3212-3218. https://doi.org/10.1021/acs.jpcc.6b11525
Nanocrystalline FeF<sub>3</sub> and MF<sub>2</sub> (M = Fe, Co, and Mn) from metal trifluoroacetates and their Li(Na)-ion storage properties
Guntlin, C. P., Zünd, T., Kravchyk, K. V., Wörle, M., Bodnarchuk, M. I., & Kovalenko, M. V. (2017). Nanocrystalline FeF3 and MF2 (M = Fe, Co, and Mn) from metal trifluoroacetates and their Li(Na)-ion storage properties. Journal of Materials Chemistry A, 5(16), 7383-7393. https://doi.org/10.1039/c7ta00862g
Bio-inspired superhydrophobic and omniphobic wood surfaces
Guo, H., Fuchs, P., Casdorff, K., Michen, B., Chanana, M., Hagendorfer, H., … Burgert, I. (2017). Bio-inspired superhydrophobic and omniphobic wood surfaces. Advanced Materials Interfaces, 4(1), 1600289 (6 pp.). https://doi.org/10.1002/admi.201600289
Polarized emission in II–VI and perovskite colloidal quantum dots
Isarov, M., Tan, L. Z., Tilchin, J., Rabouw, F. T., Bodnarchuk, M. I., van Dijk-Moes, R. J. A., … Lifshitz, E. (2017). Polarized emission in II–VI and perovskite colloidal quantum dots. Journal of Physics B: Atomic, Molecular and Optical Physics, 50(21), 214001 (14 pp.). https://doi.org/10.1088/1361-6455/aa8dd4
Rashba effect in a single colloidal CsPbBr<sub>3</sub> perovskite nanocrystal detected by magneto-optical measurements
Isarov, M., Tan, L. Z., Bodnarchuk, M. I., Kovalenko, M. V., Rappe, A. M., & Lifshitz, E. (2017). Rashba effect in a single colloidal CsPbBr3 perovskite nanocrystal detected by magneto-optical measurements. Nano Letters, 17(8), 5020-5026. https://doi.org/10.1021/acs.nanolett.7b02248
Properties and potential optoelectronic applications of lead halide perovskite nanocrystals
Kovalenko, M. V., Protesescu, L., & Bodnarchuk, M. I. (2017). Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science, 358(6364), 745-750. https://doi.org/10.1126/science.aam7093
Solution-based synthesis and processing of Sn- and Bi-doped Cu<SUB>3</SUB>SbSe<SUB>4</SUB> nanocrystals, nanomaterials and ring-shaped thermoelectric generators
Liu, Y., García, G., Ortega, S., Cadavid, D., Palacios, P., Lu, J., … Cabot, A. (2017). Solution-based synthesis and processing of Sn- and Bi-doped Cu3SbSe4 nanocrystals, nanomaterials and ring-shaped thermoelectric generators. Journal of Materials Chemistry A, 5(6), 2592-2602. https://doi.org/10.1039/C6TA08467B
Bottom-up engineering of thermoelectric nanomaterials and devices from solution-processed nanoparticle building blocks
Ortega, S., Ibáñez, M., Liu, Y., Zhang, Y., Kovalenko, M. V., Cadavid, D., & Cabot, A. (2017). Bottom-up engineering of thermoelectric nanomaterials and devices from solution-processed nanoparticle building blocks. Chemical Society Reviews, 46(12), 3510-3528. https://doi.org/10.1039/C6CS00567E
Long-lived hot carriers in formamidinium lead iodide nanocrystals
Papagiorgis, P., Protesescu, L., Kovalenko, M. V., Othonos, A., & Itskos, G. (2017). Long-lived hot carriers in formamidinium lead iodide nanocrystals. Journal of Physical Chemistry C, 121(22), 12434-12440. https://doi.org/10.1021/acs.jpcc.7b02308
 

Pages