Active Filters

  • (-) Organizational Unit = 207 Thin Films and Photovoltaics
  • (-) Publication Year = 2009 - 2018
  • (-) Empa Authors = Kravchyk, Kostiantyn V.
Search Results 1 - 20 of 23
Select Page
Popcorn-shaped Fe<sub>x</sub>O (Wüstite) nanoparticles from a single-source precursor: colloidal synthesis and magnetic properties
Guntlin, C. P., Ochsenbein, S. T., Wörle, M., Erni, R., Kravchyk, K. V., & Kovalenko, M. V. (2018). Popcorn-shaped FexO (Wüstite) nanoparticles from a single-source precursor: colloidal synthesis and magnetic properties. Chemistry of Materials, 30(4), 1249-1256. https://doi.org/10.1021/acs.chemmater.7b04382
Colloidal bismuth Nanocrystals as a model anode material for rechargeable Mg-ion batteries: atomistic and mesoscale insights
Kravchyk, K. V., Piveteau, L., Caputo, R., He, M., Stadie, N. P., Bodnarchuk, M. I., … Kovalenko, M. V. (2018). Colloidal bismuth Nanocrystals as a model anode material for rechargeable Mg-ion batteries: atomistic and mesoscale insights. ACS Nano, 12(8), 8297-8307. https://doi.org/10.1021/acsnano.8b03572
High-energy-density dual-ion battery for stationary storage of electricity using concentrated potassium fluorosulfonylimide
Kravchyk, K. V., Bhauriyal, P., Piveteau, L., Guntlin, C. P., Pathak, B., & Kovalenko, M. V. (2018). High-energy-density dual-ion battery for stationary storage of electricity using concentrated potassium fluorosulfonylimide. Nature Communications, 9, 4469 (9 pp.). https://doi.org/10.1038/s41467-018-06923-6
NaFeF<sub>3</sub> nanoplates as low-cost sodium and lithium cathode materials for stationary energy storage
Kravchyk, K. V., Zünd, T., Wörle, M., Kovalenko, M. V., & Bodnarchuk, M. I. (2018). NaFeF3 nanoplates as low-cost sodium and lithium cathode materials for stationary energy storage. Chemistry of Materials, 30(6), 1825-1829. https://doi.org/10.1021/acs.chemmater.7b04743
Ni-Al-Cr superalloy as high temperature cathode current collector for advanced thin film Li batteries
Lin, T. Y., Filippin, A., Rawlence, M., Zünd, T., Kravchyk, K., Sastre-Pellicer, J., … Buecheler, S. (2018). Ni-Al-Cr superalloy as high temperature cathode current collector for advanced thin film Li batteries. RSC Advances, 8(36), 20304-20313. https://doi.org/10.1039/c8ra02461h
SnP nanocrystals as anode materials for Na-ion batteries
Liu, J., Wang, S., Kravchyk, K., Ibáñez, M., Krumeich, F., Widmer, R., … Cabot, A. (2018). SnP nanocrystals as anode materials for Na-ion batteries. Journal of Materials Chemistry A, 6(23), 10958-10966. https://doi.org/10.1039/c8ta01492b
Polypyrenes as high-performance cathode materials for aluminum batteries
Walter, M., Kravchyk, K. V., Böfer, C., Widmer, R., & Kovalenko, M. V. (2018). Polypyrenes as high-performance cathode materials for aluminum batteries. Advanced Materials, 30(15), 1705644 (6 pp.). https://doi.org/10.1002/adma.201705644
Aluminum chloride-graphite batteries with flexible current collectors prepared from earth-abundant elements
Wang, S., Kravchyk, K. V., Filippin, A. N., Müller, U., Tiwari, A. N., Buecheler, S., … Kovalenko, M. V. (2018). Aluminum chloride-graphite batteries with flexible current collectors prepared from earth-abundant elements. Advanced Science, 5(4), 1700712 (6 pp.). https://doi.org/10.1002/advs.201700712
Monodisperse CoSn<sub><small>2</small></sub> and FeSn<sub><small>2</small></sub> nanocrystals as high-performance anode materials for lithium-ion batteries
Wang, S., He, M., Walter, M., Krumeich, F., Kravchyk, K. V., & Kovalenko, M. V. (2018). Monodisperse CoSn2 and FeSn2 nanocrystals as high-performance anode materials for lithium-ion batteries. Nanoscale, 10(15), 6827-6831. https://doi.org/10.1039/c7nr08261d
Chromium nitride as a stable cathode current collector for all-solid-state thin film Li-ion batteries
Filippin, A. N., Rawlence, M., Wäckerlin, A., Feurer, T., Zünd, T., Kravchyk, K., … Buecheler, S. (2017). Chromium nitride as a stable cathode current collector for all-solid-state thin film Li-ion batteries. RSC Advances, 7(43), 26960-26967. https://doi.org/10.1039/c7ra03580b
Nanocrystalline FeF<sub>3</sub> and MF<sub>2</sub> (M = Fe, Co, and Mn) from metal trifluoroacetates and their Li(Na)-ion storage properties
Guntlin, C. P., Zünd, T., Kravchyk, K. V., Wörle, M., Bodnarchuk, M. I., & Kovalenko, M. V. (2017). Nanocrystalline FeF3 and MF2 (M = Fe, Co, and Mn) from metal trifluoroacetates and their Li(Na)-ion storage properties. Journal of Materials Chemistry A, 5(16), 7383-7393. https://doi.org/10.1039/c7ta00862g
Efficient aluminum chloride-natural graphite battery
Kravchyk, K. V., Wang, S., Piveteau, L., & Kovalenko, M. V. (2017). Efficient aluminum chloride-natural graphite battery. Chemistry of Materials, 29(10), 4484-4492. https://doi.org/10.1021/acs.chemmater.7b01060
Direct synthesis of bulk boron-doped graphitic carbon
Stadie, N. P., Billeter, E., Piveteau, L., Kravchyk, K. V., Döbeli, M., & Kovalenko, M. V. (2017). Direct synthesis of bulk boron-doped graphitic carbon. Chemistry of Materials, 29(7), 3211-3218. https://doi.org/10.1021/acs.chemmater.7b00376
Zeolite-templated carbon as an ordered microporous electrode for aluminum batteries
Stadie, N. P., Wang, S., Kravchyk, K. V., & Kovalenko, M. V. (2017). Zeolite-templated carbon as an ordered microporous electrode for aluminum batteries. ACS Nano, 11(2), 1911-1919. https://doi.org/10.1021/acsnano.6b07995
Kish graphite flakes as a cathode material for an aluminum chloride-graphite battery
Wang, S., Kravchyk, K. V., Krumeich, F., & Kovalenko, M. V. (2017). Kish graphite flakes as a cathode material for an aluminum chloride-graphite battery. ACS Applied Materials and Interfaces, 9(34), 28478-28485. https://doi.org/10.1021/acsami.7b07499
Monodisperse SnSb nanocrystals for Li-ion and Na-ion battery anodes: synergy and dissonance between Sn and Sb
He, M., Walter, M., Kravchyk, K. V., Erni, R., Widmer, R., & Kovalenko, M. V. (2015). Monodisperse SnSb nanocrystals for Li-ion and Na-ion battery anodes: synergy and dissonance between Sn and Sb. Nanoscale, 7(2), 455-459. https://doi.org/10.1039/c4nr05604c
Colloidal BiF<SUB>3</SUB> nanocrystals: a bottom-up approach to conversion-type Li-ion cathodes
Oszajca, M. F., Kravchyk, K. V., Walter, M., Krieg, F., Bodnarchuk, M. I., & Kovalenko, M. V. (2015). Colloidal BiF3 nanocrystals: a bottom-up approach to conversion-type Li-ion cathodes. Nanoscale, 7(40), 16601-16605. https://doi.org/10.1039/C5NR04488J
Efficient and inexpensive sodium–magnesium hybrid battery
Walter, M., Kravchyk, K. V., Ibáñez, M., & Kovalenko, M. V. (2015). Efficient and inexpensive sodium–magnesium hybrid battery. Chemistry of Materials, 27(21), 7452-7458. https://doi.org/10.1021/acs.chemmater.5b03531
Colloidal tin–germanium nanorods and their Li-ion storage properties
Bodnarchuk, M. I., Kravchyk, K. V., Krumeich, F., Wang, S., & Kovalenko, M. V. (2014). Colloidal tin–germanium nanorods and their Li-ion storage properties. ACS Nano, 8(3), 2360-2368. https://doi.org/10.1021/nn4058227
Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: nano versus bulk
He, M., Kravchyk, K., Walter, M., & Kovalenko, M. V. (2014). Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: nano versus bulk. Nano Letters, 14(3), 1255-1262. https://doi.org/10.1021/nl404165c