Active Filters

  • (-) Empa Laboratories = 207 Thin Films and Photovoltaics
  • (-) Publication Year = 2009 - 2018
  • (-) Empa Laboratories = 299 Electron Microscopy Center
  • (-) Keywords ≠ mean inner potential (MIP)
Search Results 1 - 15 of 15
  • RSS Feed
Select Page
Voids and compositional inhomogeneities in Cu(In,Ga)Se<sub>2</sub> thin films: evolution during growth and impact on solar cell performance
Avancini, E., Keller, D., Carron, R., Arroyo-Rojas Dasilva, Y., Erni, R., Priebe, A., … Tiwari, A. N. (2018). Voids and compositional inhomogeneities in Cu(In,Ga)Se2 thin films: evolution during growth and impact on solar cell performance. Science and Technology of Advanced Materials, 19(1), 871-882. https://doi.org/10.1080/14686996.2018.1536679
Popcorn-shaped Fe<sub>x</sub>O (Wüstite) nanoparticles from a single-source precursor: colloidal synthesis and magnetic properties
Guntlin, C. P., Ochsenbein, S. T., Wörle, M., Erni, R., Kravchyk, K. V., & Kovalenko, M. V. (2018). Popcorn-shaped FexO (Wüstite) nanoparticles from a single-source precursor: colloidal synthesis and magnetic properties. Chemistry of Materials, 30(4), 1249-1256. https://doi.org/10.1021/acs.chemmater.7b04382
ALD-Zn<sub><em>x</em></sub>Ti<sub><em>y</em></sub>O as window layer in Cu(In,Ga)Se<sub>2</sub> solar cells</span>
Löckinger, J., Nishiwaki, S., Andres, C., Erni, R., Rossell, M. D., Romanyuk, Y. E., … Tiwari, A. N. (2018). ALD-ZnxTiyO as window layer in Cu(In,Ga)Se2 solar cells. ACS Applied Materials and Interfaces, 10(50), 43603-43609. https://doi.org/10.1021/acsami.8b14490
Epitaxial thin films as a model system for Li-Ion conductivity in Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>
Pagani, F., Stilp, E., Pfenninger, R., Reyes, E. C., Remhof, A., Balogh-Michels, Z., … Battaglia, C. (2018). Epitaxial thin films as a model system for Li-Ion conductivity in Li4Ti5O12. ACS Applied Materials and Interfaces, 10(51), 44494-44500. https://doi.org/10.1021/acsami.8b16519
Band gap widening at random CIGS grain boundary detected by valence electron energy loss spectroscopy
Keller, D., Buecheler, S., Reinhard, P., Pianezzi, F., Bissig, B., Carron, R., … Tiwari, A. N. (2016). Band gap widening at random CIGS grain boundary detected by valence electron energy loss spectroscopy. Applied Physics Letters, 109(15), 153103 (4 pp.). https://doi.org/10.1063/1.4964516
Analysis of edge threading dislocations <I>b</I>⃗ =1/2(110) in three dimensional Ge crystals grown on (001)-Si substrates
Arroyo Rojas Dasilva, Y., Rossell, M. D., Keller, D., Gröning, P., Isa, F., Kreiliger, T., … Erni, R. (2015). Analysis of edge threading dislocations b⃗ =1/2(110) in three dimensional Ge crystals grown on (001)-Si substrates. Applied Physics Letters, 107(9), 093501 (4 pp.). https://doi.org/10.1063/1.4929422
Monodisperse SnSb nanocrystals for Li-ion and Na-ion battery anodes: synergy and dissonance between Sn and Sb
He, M., Walter, M., Kravchyk, K. V., Erni, R., Widmer, R., & Kovalenko, M. V. (2015). Monodisperse SnSb nanocrystals for Li-ion and Na-ion battery anodes: synergy and dissonance between Sn and Sb. Nanoscale, 7(2), 455-459. https://doi.org/10.1039/c4nr05604c
Features of KF and NaF postdeposition treatments of Cu(In,Ga)Se<SUB>2</SUB> absorbers for high efficiency thin film solar cells
Reinhard, P., Bissig, B., Pianezzi, F., Avancini, E., Hagendorfer, H., Keller, D., … Tiwari, A. N. (2015). Features of KF and NaF postdeposition treatments of Cu(In,Ga)Se2 absorbers for high efficiency thin film solar cells. Chemistry of Materials, 27(16), 5755-5764. https://doi.org/10.1021/acs.chemmater.5b02335
Inexpensive antimony nanocrystals and their composites with red phosphorus as high-performance anode materials for Na-ion batteries
Walter, M., Erni, R., & Kovalenko, M. V. (2015). Inexpensive antimony nanocrystals and their composites with red phosphorus as high-performance anode materials for Na-ion batteries. Scientific Reports, 5, 8418 (7 pp.). https://doi.org/10.1038/srep08418
Enhanced carrier collection from CdS passivated grains in solution-processed Cu<SUB>2</SUB>ZnSn(S,Se)<SUB>4</SUB> solar cells
Werner, M., Keller, D., Haass, S. G., Gretener, C., Bissig, B., Fuchs, P., … Tiwari, A. N. (2015). Enhanced carrier collection from CdS passivated grains in solution-processed Cu2ZnSn(S,Se)4 solar cells. ACS Applied Materials and Interfaces, 7(22), 12141-12146. https://doi.org/10.1021/acsami.5b02435
Local band gap measurements by VEELS of thin film solar cells
Keller, D., Buecheler, S., Reinhard, P., Pianezzi, F., Pohl, D., Surrey, A., … Tiwari, A. N. (2014). Local band gap measurements by VEELS of thin film solar cells. Microscopy and Microanalysis, 20(4), 1246-1253. https://doi.org/10.1017/S1431927614000543
Monodisperse colloidal gallium nanoparticles: synthesis, low temperature crystallization, surface plasmon resonance and Li-ion storage
Yarema, M., Wörle, M., Rossell, M. D., Erni, R., Caputo, R., Protesescu, L., … Kovalenko, M. V. (2014). Monodisperse colloidal gallium nanoparticles: synthesis, low temperature crystallization, surface plasmon resonance and Li-ion storage. Journal of the American Chemical Society, 136(35), 12422-12430. https://doi.org/10.1021/ja506712d
Binary superlattices from colloidal nanocrystals and giant polyoxometalate clusters
Bodnarchuk, M. I., Erni, R., Krumeich, F., & Kovalenko, M. V. (2013). Binary superlattices from colloidal nanocrystals and giant polyoxometalate clusters. Nano Letters, 13(4), 1699-1705. https://doi.org/10.1021/nl4002475
Potassium-induced surface modification of Cu(In,Ga)Se<SUB>2</SUB> thin films for high-efficiency solar cells
Chirilă, A., Reinhard, P., Pianezzi, F., Bloesch, P., Uhl, A. R., Fella, C., … Tiwari, A. N. (2013). Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. Nature Materials, 12(12), 1107-1111. https://doi.org/10.1038/nmat3789
Urchin-inspired zinc oxide as building blocks for nanostructured solar cells
Elias, J., Bechelany, M., Utke, I., Erni, R., Hosseini, D., Michler, J., & Philippe, L. (2012). Urchin-inspired zinc oxide as building blocks for nanostructured solar cells. Nano Energy, 1(5), 696-705. https://doi.org/10.1016/j.nanoen.2012.07.002