Active Filters

  • (-) Organizational Unit = 207 Thin Films and Photovoltaics
  • (-) Publication Year = 2009 - 2018
  • (-) Journal = ACS Applied Materials and Interfaces
Search Results 1 - 13 of 13
  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Colloidal quantum dot inks for single-step-fabricated field-effect transistors: the importance of postdeposition ligand removal
Balazs, D. M., Rizkia, N., Fang, H. H., Dirin, D. N., Momand, J., Kooi, B. J., … Loi, M. A. (2018). Colloidal quantum dot inks for single-step-fabricated field-effect transistors: the importance of postdeposition ligand removal. ACS Applied Materials and Interfaces, 10(6), 5626-5632. https://doi.org/10.1021/acsami.7b16882
Pick a color MARIA: adaptive sampling enables the rapid identification of complex perovskite nanocrystal compositions with defined emission characteristics
Bezinge, L., Maceiczyk, R. M., Lignos, I., Kovalenko, M. V., & deMello, A. J. (2018). Pick a color MARIA: adaptive sampling enables the rapid identification of complex perovskite nanocrystal compositions with defined emission characteristics. ACS Applied Materials and Interfaces, 10(22), 18869-18878. https://doi.org/10.1021/acsami.8b03381
ALD-Zn<small>sub><i>x</i></sub></small>Ti<small><sub><i>y</i></sub></small>O as window layer in Cu(In,Ga)Se<small><sub>2</sub></small> solar cells
Löckinger, J., Nishiwaki, S., Andres, C., Erni, R., Rossell, M. D., Romanyuk, Y. E., … Tiwari, A. N. (2018). ALD-Znsub>xTiyO as window layer in Cu(In,Ga)Se2 solar cells. ACS Applied Materials and Interfaces, 10(50), 43603-43609. https://doi.org/10.1021/acsami.8b14490
Epitaxial thin films as a model system for Li-Ion conductivity in Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>
Pagani, F., Stilp, E., Pfenninger, R., Reyes, E. C., Remhof, A., Balogh-Michels, Z., … Battaglia, C. (2018). Epitaxial thin films as a model system for Li-Ion conductivity in Li4Ti5O12. ACS Applied Materials and Interfaces, 10(51), 44494-44500. https://doi.org/10.1021/acsami.8b16519
Effect of gallium substitution on lithium-ion conductivity and phase evolution in sputtered Li<sub>7-3x</sub>Ga <sub>x</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> thin films
Rawlence, M., Filippin, A. N., Wäckerlin, A., Lin, T. Y., Cuervo-Reyes, E., Remhof, A., … Buecheler, S. (2018). Effect of gallium substitution on lithium-ion conductivity and phase evolution in sputtered Li7-3xGa xLa3Zr2O12 thin films. ACS Applied Materials and Interfaces, 10(16), 13720-13728. https://doi.org/10.1021/acsami.8b03163
Squaraine dye for a visibly transparent all-organic optical upconversion device with sensitivity at 1000 nm
Strassel, K., Kaiser, A., Jenatsch, S., Véron, A. C., Anantharaman, S. B., Hack, E., … Hany, R. (2018). Squaraine dye for a visibly transparent all-organic optical upconversion device with sensitivity at 1000 nm. ACS Applied Materials and Interfaces, 10(13), 11063-11069. https://doi.org/10.1021/acsami.8b00047
Formation of a K—In—Se surface species by NaF/KF postdeposition treatment of CU(In,Ga)Se<SUB>2</SUB> thin-film solar cell absorbers
Handick, E., Reinhard, P., Wilks, R. G., Pianezzi, F., Kunze, T., Kreikemeyer-Lorenzo, D., … Bär, M. (2017). Formation of a K—In—Se surface species by NaF/KF postdeposition treatment of CU(In,Ga)Se2 thin-film solar cell absorbers. ACS Applied Materials and Interfaces, 9(4), 3581-3589. https://doi.org/10.1021/acsami.6b11892
Kish graphite flakes as a cathode material for an aluminum chloride-graphite battery
Wang, S., Kravchyk, K. V., Krumeich, F., & Kovalenko, M. V. (2017). Kish graphite flakes as a cathode material for an aluminum chloride-graphite battery. ACS Applied Materials and Interfaces, 9(34), 28478-28485. https://doi.org/10.1021/acsami.7b07499
Polymer-enhanced stability of inorganic perovskite nanocrystals and their application in color conversion LEDs
Meyns, M., Perálvarez, M., Heuer-Jungemann, A., Hertog, W., Ibáñez, M., Nafria, R., … Kanaras, A. G. (2016). Polymer-enhanced stability of inorganic perovskite nanocrystals and their application in color conversion LEDs. ACS Applied Materials and Interfaces, 8(30), 19579-19586. https://doi.org/10.1021/acsami.6b02529
Potassium postdeposition treatment-induced band gap widening at Cu(In,Ga)Se<SUB>2</SUB> surfaces – reason for performance leap?
Handick, E., Reinhard, P., Alsmeier, J. H., Köhler, L., Pianezzi, F., Krause, S., … Bär, M. (2015). Potassium postdeposition treatment-induced band gap widening at Cu(In,Ga)Se2 surfaces – reason for performance leap? ACS Applied Materials and Interfaces, 7(49), 27414-27420. https://doi.org/10.1021/acsami.5b09231
Organic–inorganic hybrid solution-processed H<SUB>2</SUB>-evolving photocathodes
Lai, L. H., Gomulya, W., Berghuis, M., Protesescu, L., Detz, R. J., Reek, J. N. H., … Loi, M. A. (2015). Organic–inorganic hybrid solution-processed H2-evolving photocathodes. ACS Applied Materials and Interfaces, 7(34), 19083-19090. https://doi.org/10.1021/acsami.5b04550
Enhanced carrier collection from CdS passivated grains in solution-processed Cu<SUB>2</SUB>ZnSn(S,Se)<SUB>4</SUB> solar cells
Werner, M., Keller, D., Haass, S. G., Gretener, C., Bissig, B., Fuchs, P., … Tiwari, A. N. (2015). Enhanced carrier collection from CdS passivated grains in solution-processed Cu2ZnSn(S,Se)4 solar cells. ACS Applied Materials and Interfaces, 7(22), 12141-12146. https://doi.org/10.1021/acsami.5b02435
Transparent, conducting ATO thin films by epoxide-initiated sol–gel chemistry: a highly versatile route to mixed-metal oxide films
Koebel, M. M., Nadargi, D. Y., Jimenez-Cadena, G., & Romanyuk, Y. E. (2012). Transparent, conducting ATO thin films by epoxide-initiated sol–gel chemistry: a highly versatile route to mixed-metal oxide films. ACS Applied Materials and Interfaces, 4(5), 2464-2473. https://doi.org/10.1021/am300143z