Active Filters

  • (-) Organizational Unit = 207 Thin Films and Photovoltaics
  • (-) Publication Year = 2019 - 2019
Search Results 1 - 20 of 65

Pages

  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Building better all-solid-state batteries with Li-garnet solid electrolytes and metalloid anodes
Afyon, S., Kravchyk, K. V., Wang, S., van den Broek, J., Hänsel, C., Kovalenko, M. V., & Rupp, J. L. M. (2019). Building better all-solid-state batteries with Li-garnet solid electrolytes and metalloid anodes. Journal of Materials Chemistry A, 7(37), 21299-21308. https://doi.org/10.1039/C9TA04999A
Highly stable, near-unity efficiency atomically flat semiconductor nanocrystals of CdSe/Zns hetero-nanoplatelets enabled by Zns-shell hot-injection growth
Altintas, Y., Quliyeva, U., Gungor, K., Erdem, O., Kelestemur, Y., Mutlugun, E., … Demir, H. V. (2019). Highly stable, near-unity efficiency atomically flat semiconductor nanocrystals of CdSe/Zns hetero-nanoplatelets enabled by Zns-shell hot-injection growth. Small, 15(8), 1804854 (11 pp.). https://doi.org/10.1002/smll.201804854
Tailoring the colloidal stability, magnetic separability and  cytocompatibility of high-capacity magnetic anion exchangers
Anthis, A. H. C., Matter, M. T., Keevend, K., Gerken, L., Scheibler, S., Doswald, S., … Herrmann, I. K. (2019). Tailoring the colloidal stability, magnetic separability and  cytocompatibility of high-capacity magnetic anion exchangers. ACS Applied Materials and Interfaces. https://doi.org/10.1021/acsami.9b16619
Size-dependent biexciton spectrum in CsPbBr<sub>3</sub> perovskite nanocrystals
Ashner, M. N., Shulenberger, K. E., Krieg, F., Powers, E. R., Kovalenko, M. V., Bawendi, M. G., & Tisdale, W. A. (2019). Size-dependent biexciton spectrum in CsPbBr3 perovskite nanocrystals. ACS Energy Letters, 4(11), 2639-2645. https://doi.org/10.1021/acsenergylett.9b02041
Analysis of the voltage losses in CZTSSe solar cells of varying Sn content
Azzouzi, M., Cabas-Vidani, A., Haass, S. G., Röhr, J. A., Romanyuk, Y. E., Tiwari, A. N., & Nelson, J. (2019). Analysis of the voltage losses in CZTSSe solar cells of varying Sn content. Journal of Physical Chemistry Letters, 10(11), 2829-2835. https://doi.org/10.1021/acs.jpclett.9b00506
Planar perovskite solar cells with long-term stability using ionic liquid additives
Bai, S., Da, P., Li, C., Wang, Z., Yuan, Z., Fu, F., … Snaith, H. J. (2019). Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature, 571(7764), 245-250. https://doi.org/10.1038/s41586-019-1357-2
Coherent spin dynamics of electrons and holes in CsPbBr<sub>3</sub> perovskite crystals
Belykh, V. V., Yakovlev, D. R., Glazov, M. M., Grigoryev, P. S., Hussain, M., Rautert, J., … Bayer, M. (2019). Coherent spin dynamics of electrons and holes in CsPbBr3 perovskite crystals. Nature Communications, 10(1), 673 (6 pp.). https://doi.org/10.1038/s41467-019-08625-z
Crystal structure,mMorphology and surface termination of cyan-emissive, 6-monolayers-thick CsPbBr3 nanoplatelets from X-ray total scattering
Bertolotti, F., Nedelcu, G., Vivani, A., Cervellino, A., Masciocchi, N., Guagliardi, A., & Kovalenko, M. V. (2019). Crystal structure,mMorphology and surface termination of cyan-emissive, 6-monolayers-thick CsPbBr3 nanoplatelets from X-ray total scattering. ACS Nano. https://doi.org/10.1021/acsnano.9b07626
Rationalizing and controlling the surface structure and electronic passivation of cesium lead halide nanocrystals
Bodnarchuk, M. I., Boehme, S. C., ten Brinck, S., Bernasconi, C., Shynkarenko, Y., Krieg, F., … Infante, I. (2019). Rationalizing and controlling the surface structure and electronic passivation of cesium lead halide nanocrystals. ACS Energy Letters, 4(1), 63-74. https://doi.org/10.1021/acsenergylett.8b01669
Inkjet-printed and deep-UV-annealed YAlO&lt;sub&gt;&lt;em&gt;x&lt;/em&gt;&lt;/sub&gt; dielectrics for high-performance IGZO thin-film transistors on flexible substrates
Bolat, S., Fuchs, P., Knobelspies, S., Temel, O., Torres Sevilla, G., Gilshtein, E., … Romanyuk, Y. E. (2019). Inkjet-printed and deep-UV-annealed YAlOx dielectrics for high-performance IGZO thin-film transistors on flexible substrates. Advanced Electronic Materials, 5(6), 1800843 (9 pp.). https://doi.org/10.1002/aelm.201800843
Advanced alkali treatments for high‐efficiency Cu(In,Ga)Se&lt;sub&gt;2&lt;/sub&gt; solar cells on flexible substrates
Carron, R., Nishiwaki, S., Feurer, T., Hertwig, R., Avancini, E., Löckinger, J., … Tiwari, A. N. (2019). Advanced alkali treatments for high‐efficiency Cu(In,Ga)Se2 solar cells on flexible substrates. Advanced Energy Materials, 9(24), 1900408 (8 pp.). https://doi.org/10.1002/aenm.201900408
Bandgap of thin film solar cell absorbers: a comparison of various determination methods
Carron, R., Andres, C., Avancini, E., Feurer, T., Nishiwaki, S., Pisoni, S., … Tiwari, A. N. (2019). Bandgap of thin film solar cell absorbers: a comparison of various determination methods. Thin Solid Films, 669, 482-486. https://doi.org/10.1016/j.tsf.2018.11.017
Tunability and scalability of single-atom catalysts based on carbon nitride
Chen, Z., Mitchell, S., Krumeich, F., Hauert, R., Yakunin, S., Kovalenko, M. V., & Pérez-Ramírez, J. (2019). Tunability and scalability of single-atom catalysts based on carbon nitride. ACS Sustainable Chemistry and Engineering, 7(5), 5223-5230. https://doi.org/10.1021/acssuschemeng.8b06148
Amplified spontaneous emission threshold reduction and operational stability improvement in CsPbBr&lt;sub&gt;3&lt;/sub&gt; nanocrystals films by hydrophobic functionalization of the substrate
De Giorgi, M. L., Krieg, F., Kovalenko, M. V., & Anni, M. (2019). Amplified spontaneous emission threshold reduction and operational stability improvement in CsPbBr3 nanocrystals films by hydrophobic functionalization of the substrate. Scientific Reports, 9(1), 17964 (10 pp.). https://doi.org/10.1038/s41598-019-54412-7
Microcarrier-assisted inorganic shelling of lead halide perovskite nanocrystals
Dirin, D. N., Benin, B. M., Yakunin, S., Krumeich, F., Raino, G., Frison, R., & Kovalenko, M. V. (2019). Microcarrier-assisted inorganic shelling of lead halide perovskite nanocrystals. ACS Nano, 13(10), 11642-11652. https://doi.org/10.1021/acsnano.9b05481
Silicon oxycarbide—tin nanocomposite as a high‐power‐density anode for Li‐ion batteries
Dubey, R. J. ‐C., Sasikumar, P. V. W., Krumeich, F., Blugan, G., Kuebler, J., Kravchyk, K. V., … Kovalenko, M. V. (2019). Silicon oxycarbide—tin nanocomposite as a high‐power‐density anode for Li‐ion batteries. Advanced Science, 6(19), 1901220 (9 pp.). https://doi.org/10.1002/advs.201901220
Zeolite-templated carbon as a stable, high power magnesium-ion cathode material
Dubey, R. J. C., Colijn, T., Aebli, M., Hanson, E. E., Widmer, R., Kravchyk, K. V., … Stadie, N. P. (2019). Zeolite-templated carbon as a stable, high power magnesium-ion cathode material. ACS Applied Materials and Interfaces, 11(43), 39902-39909. https://doi.org/10.1021/acsami.9b11968
Zeolite-templated carbon as the cathode for a high energy density dual-ion battery
Dubey, R. J. C., Nüssli, J., Piveteau, L., Kravchyk, K. V., Rossell, M. D., Campanini, M., … Stadie, N. P. (2019). Zeolite-templated carbon as the cathode for a high energy density dual-ion battery. ACS Applied Materials and Interfaces, 11(19), 17686-17696. https://doi.org/10.1021/acsami.9b03886
Cost-effective sol-gel synthesis of porous CuO nanoparticle aggregates with tunable specific surface area
Dörner, L., Cancellieri, C., Rheingans, B., Walter, M., Kägi, R., Schmutz, P., … Jeurgens, L. P. H. (2019). Cost-effective sol-gel synthesis of porous CuO nanoparticle aggregates with tunable specific surface area. Scientific Reports, 9, 11758 (15 pp.). https://doi.org/10.1038/s41598-019-48020-8
Efficiency improvement of near‐stoichiometric CuInSe&lt;sub&gt;2&lt;/sub&gt;Solar cells for application in tandem devices
Feurer, T., Carron, R., Torres Sevilla, G., Fu, F., Pisoni, S., Romanyuk, Y. E., … Tiwari, A. N. (2019). Efficiency improvement of near‐stoichiometric CuInSe2Solar cells for application in tandem devices. Advanced Energy Materials, 9(35), 1901428 (6 pp.). https://doi.org/10.1002/aenm.201901428
 

Pages