Active Filters

  • (-) Empa Laboratories = 207 Thin Films and Photovoltaics
  • (-) Journal = Nature Communications
Search Results 1 - 15 of 15
  • RSS Feed
Select Page
The squeezed dark nuclear spin state in lead halide perovskites
Kirstein, E., Smirnov, D. S., Zhukov, E. A., Yakovlev, D. R., Kopteva, N. E., Dirin, D. N., … Bayer, M. (2023). The squeezed dark nuclear spin state in lead halide perovskites. Nature Communications, 14(1), 6683 (8 pp.). https://doi.org/10.1038/s41467-023-42265-8
Universal scaling laws for charge-carrier interactions with quantum confinement in lead-halide perovskites
Tamarat, P., Prin, E., Berezovska, Y., Moskalenko, A., Nguyen, T. P. T., Xia, C., … Lounis, B. (2023). Universal scaling laws for charge-carrier interactions with quantum confinement in lead-halide perovskites. Nature Communications, 14, 229 (8 pp.). https://doi.org/10.1038/s41467-023-35842-4
Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing
John, R. A., Demirağ, Y., Shynkarenko, Y., Berezovska, Y., Ohannessian, N., Payvand, M., … Kovalenko, M. V. (2022). Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing. Nature Communications, 13(1), 2074 (10 pp.). https://doi.org/10.1038/s41467-022-29727-1
The Landé factors of electrons and holes in lead halide perovskites: universal dependence on the band gap
Kirstein, E., Yakovlev, D. R., Glazov, M. M., Zhukov, E. A., Kudlacik, D., Kalitukha, I. V., … Bayer, M. (2022). The Landé factors of electrons and holes in lead halide perovskites: universal dependence on the band gap. Nature Communications, 13, 3062 (8 pp.). https://doi.org/10.1038/s41467-022-30701-0
Ultra-narrow room-temperature emission from single CsPbBr<sub>3</sub> perovskite quantum dots
Rainò, G., Yazdani, N., Boehme, S. C., Kober-Czerny, M., Zhu, C., Krieg, F., … Kovalenko, M. V. (2022). Ultra-narrow room-temperature emission from single CsPbBr3 perovskite quantum dots. Nature Communications, 13, 2587 (8 pp.). https://doi.org/10.1038/s41467-022-30016-0
Radiative lifetime-encoded unicolour security tags using perovskite nanocrystals
Yakunin, S., Chaaban, J., Benin, B. M., Cherniukh, I., Bernasconi, C., Landuyt, A., … Kovalenko, M. V. (2021). Radiative lifetime-encoded unicolour security tags using perovskite nanocrystals. Nature Communications, 12(1), 981 (8 pp.). https://doi.org/10.1038/s41467-021-21214-3
The dark exciton ground state promotes photon-pair emission in individual perovskite nanocrystals
Tamarat, P., Hou, L., Trebbia, J. B., Swarnkar, A., Biadala, L., Louyer, Y., … Lounis, B. (2020). The dark exciton ground state promotes photon-pair emission in individual perovskite nanocrystals. Nature Communications, 11(1), 6001 (8 pp.). https://doi.org/10.1038/s41467-020-19740-7
Coherent spin dynamics of electrons and holes in CsPbBr<sub>3</sub> perovskite crystals
Belykh, V. V., Yakovlev, D. R., Glazov, M. M., Grigoryev, P. S., Hussain, M., Rautert, J., … Bayer, M. (2019). Coherent spin dynamics of electrons and holes in CsPbBr3 perovskite crystals. Nature Communications, 10(1), 673 (6 pp.). https://doi.org/10.1038/s41467-019-08625-z
Unraveling exciton–phonon coupling in individual FAPbI<small><sub>3</sub></small> nanocrystals emitting near-infrared single photons
Fu, M., Tamarat, P., Trebbia, J. B., Bodnarchuk, M. I., Kovalenko, M. V., Even, J., & Lounis, B. (2018). Unraveling exciton–phonon coupling in individual FAPbI3 nanocrystals emitting near-infrared single photons. Nature Communications, 9(1), 3318 (10 pp.). https://doi.org/10.1038/s41467-018-05876-0
High-energy-density dual-ion battery for stationary storage of electricity using concentrated potassium fluorosulfonylimide
Kravchyk, K. V., Bhauriyal, P., Piveteau, L., Guntlin, C. P., Pathak, B., & Kovalenko, M. V. (2018). High-energy-density dual-ion battery for stationary storage of electricity using concentrated potassium fluorosulfonylimide. Nature Communications, 9, 4469 (9 pp.). https://doi.org/10.1038/s41467-018-06923-6
High-performance thermoelectric nanocomposites from nanocrystal building blocks
Ibáñez, M., Luo, Z., Genç, A., Piveteau, L., Ortega, S., Cadavid, D., … Cabot, A. (2016). High-performance thermoelectric nanocomposites from nanocrystal building blocks. Nature Communications, 7, 10766 (7 pp.). https://doi.org/10.1038/ncomms10766
Host–guest chemistry for tuning colloidal solubility, self-organization and photoconductivity of inorganic-capped nanocrystals
Bodnarchuk, M. I., Yakunin, S., Piveteau, L., & Kovalenko, M. V. (2015). Host–guest chemistry for tuning colloidal solubility, self-organization and photoconductivity of inorganic-capped nanocrystals. Nature Communications, 6, 10142 (8 pp.). https://doi.org/10.1038/ncomms10142
Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications
Fu, F., Feurer, T., Jäger, T., Avancini, E., Bissig, B., Yoon, S., … Tiwari, A. N. (2015). Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications. Nature Communications, 6, 8932 (21 pp.). https://doi.org/10.1038/ncomms9932
Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites
Yakunin, S., Protesescu, L., Krieg, F., Bodnarchuk, M. I., Nedelcu, G., Humer, M., … Kovalenko, M. V. (2015). Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nature Communications, 6, 8056 (9 pp.). https://doi.org/10.1038/ncomms9056
Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil
Kranz, L., Gretener, C., Perrenoud, J., Schmitt, R., Pianezzi, F., La Mattina, F., … Tiwari, A. N. (2013). Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil. Nature Communications, 4, 2306 (7 pp.). https://doi.org/10.1038/ncomms3306