Active Filters

  • (-) Empa Laboratories = 207 Thin Films and Photovoltaics
  • (-) Keywords = solar cells
Search Results 1 - 20 of 33
Select Page
Mismatch of quasi–fermi level splitting and V<sub>oc</sub> in perovskite solar cells
Warby, J., Shah, S., Thiesbrummel, J., Gutierrez-Partida, E., Lai, H., Alebachew, B., … Stolterfoht, M. (2023). Mismatch of quasi–fermi level splitting and Voc in perovskite solar cells. Advanced Energy Materials, 13(48), 2303135 (12 pp.). https://doi.org/10.1002/aenm.202303135
Single-crystal perovskite solar cells exhibit close to half a millimeter electron-diffusion length
Turedi, B., Lintangpradipto, M. N., Sandberg, O. J., Yazmaciyan, A., Matt, G. J., Alsalloum, A. Y., … Bakr, O. M. (2022). Single-crystal perovskite solar cells exhibit close to half a millimeter electron-diffusion length. Advanced Materials, 34(47), 2202390 (9 pp.). https://doi.org/10.1002/adma.202202390
How band tail recombination influences the open‐circuit voltage of solar cells
Wolter, M. H., Carron, R., Avancini, E., Bissig, B., Weiss, T. P., Nishiwaki, S., … Siebentritt, S. (2022). How band tail recombination influences the open‐circuit voltage of solar cells. Progress in Photovoltaics, 30(7), 702-712. https://doi.org/10.1002/pip.3449
Scalable fabrication of efficient p-n junction lead sulfide quantum dot solar cells
Goossens, V. M., Sukharevska, N. V., Dirin, D. N., Kovalenko, M. V., & Loi, M. A. (2021). Scalable fabrication of efficient p-n junction lead sulfide quantum dot solar cells. Cell Reports Physical Science, 2(12), 100655 (15 pp.). https://doi.org/10.1016/j.xcrp.2021.100655
Scalable PbS quantum dot solar cell production by blade coating from stable inks
Sukharevska, N., Bederak, D., Goossens, V. M., Momand, J., Duim, H., Dirin, D. N., … Loi, M. A. (2021). Scalable PbS quantum dot solar cell production by blade coating from stable inks. ACS Applied Materials and Interfaces, 13(4), 5195-5207. https://doi.org/10.1021/acsami.0c18204
Quantifying the elemental distribution in solar cells from X-Ray fluorescence measurements with multiple detector modules
Ziska, C., Ossig, C., Pyrlik, N., Carron, R., Avancini, E., Fevola, G., … Stuckelberger, M. E. (2020). Quantifying the elemental distribution in solar cells from X-Ray fluorescence measurements with multiple detector modules. In 47th IEEE Photovoltaic Specialists Conference (PVSC 2020) (pp. 1085-1092). https://doi.org/10.1109/PVSC45281.2020.9300345
Review of CdTe&lt;sub&gt;1&lt;/sub&gt;−&lt;sub&gt;&lt;em&gt;x&lt;/em&gt;&lt;/sub&gt;Se&lt;sub&gt;&lt;em&gt;x&lt;/em&gt;&lt;/sub&gt; thin films in solar cell applications
Lingg, M., Buecheler, S., & Tiwari, A. N. (2019). Review of CdTe1xSex thin films in solar cell applications. Coatings, 9(8), 520 (14 pp.). https://doi.org/10.3390/coatings9080520
Comparing halide ligands in PbS colloidal quantum dots for field-effect transistors and solar cells
Bederak, D., Balazs, D. M., Sukharevska, N. V., Shulga, A. G., Abdu-Aguye, M., Dirin, D. N., … Loi, M. A. (2018). Comparing halide ligands in PbS colloidal quantum dots for field-effect transistors and solar cells. ACS Applied Nano Materials, 1(12), 6882-6889. https://doi.org/10.1021/acsanm.8b01696
Refractive indices of layers and optical simulations of Cu(In,Ga)Se<sub>2</sub> solar cells
Carron, R., Avancini, E., Feurer, T., Bissig, B., Losio, P. A., Figi, R., … Tiwari, A. N. (2018). Refractive indices of layers and optical simulations of Cu(In,Ga)Se2 solar cells. Science and Technology of Advanced Materials, 19(1), 396-410. https://doi.org/10.1080/14686996.2018.1458579
Enhancing quantum dot solar cells stability with a semiconducting single-walled carbon nanotubes interlayer below the top anode
Salazar-Rios, J. M., Sukharevska, N., Speirs, M. J., Jung, S., Dirin, D., Dragoman, R. M., … Loi, M. A. (2018). Enhancing quantum dot solar cells stability with a semiconducting single-walled carbon nanotubes interlayer below the top anode. Advanced Materials Interfaces, 5(22), 1801155 (6 pp.). https://doi.org/10.1002/admi.201801155
A direct measurement of higher photovoltage at grain boundaries in CdS/ CZTSe solar cells using KPFM technique
Vishwakarma, M., Varandani, D., Andres, C., Romanyuk, Y. E., Haass, S. G., Tiwari, A. N., & Mehta, B. R. (2018). A direct measurement of higher photovoltage at grain boundaries in CdS/ CZTSe solar cells using KPFM technique. Solar Energy Materials and Solar Cells, 183, 34-40. https://doi.org/10.1016/j.solmat.2018.01.040
Alkali treatments of Cu(In,Ga)Se<small><sub>2</sub></small> thin‐film absorbers and their impact on transport barriers
Werner, F., Wolter, M. H., Siebentritt, S., Sozzi, G., Di Napoli, S., Menozzi, R., … Buecheler, S. (2018). Alkali treatments of Cu(In,Ga)Se2 thin‐film absorbers and their impact on transport barriers. Progress in Photovoltaics, 26(11), 911-923. https://doi.org/10.1002/pip.3032
Progress in thin film CIGS photovoltaics – research and development, manufacturing, and applications
Feurer, T., Reinhard, P., Avancini, E., Bissig, B., Löckinger, J., Fuchs, P., … Tiwari, A. N. (2017). Progress in thin film CIGS photovoltaics – research and development, manufacturing, and applications. Progress in Photovoltaics, 25(7), 645-667. https://doi.org/10.1002/pip.2811
Systematic compositional changes and their influence on lattice and optoelectronic properties of Cu<sub>2</sub>ZnSnSe<sub>4</sub> kesterite solar cells
Márquez, J., Neuschitzer, M., Dimitrievska, M., Gunder, R., Haass, S., Werner, M., … Forbes, I. (2016). Systematic compositional changes and their influence on lattice and optoelectronic properties of Cu2ZnSnSe4 kesterite solar cells. Solar Energy Materials and Solar Cells, 144, 579-585. https://doi.org/10.1016/j.solmat.2015.10.004
Controlled growth of PbI<SUB>2</SUB> nanoplates for rapid preparation of CH<SUB>3</SUB>NH<SUB>3</SUB>PbI<SUB>3</SUB> in planar perovskite solar cells
Fu, F., Kranz, L., Yoon, S., Löckinger, J., Jäger, T., Perrenoud, J., … Tiwari, A. N. (2015). Controlled growth of PbI2 nanoplates for rapid preparation of CH3NH3PbI3 in planar perovskite solar cells. Physica Status Solidi A: Applications and Materials, 212(12), 2708-2717. https://doi.org/10.1002/pssa.201532442
Alkali-templated surface nanopatterning of chalcogenide thin films: a novel approach toward solar cells with enhanced efficiency
Reinhard, P., Bissig, B., Pianezzi, F., Hagendorfer, H., Sozzi, G., Menozzi, R., … Tiwari, A. N. (2015). Alkali-templated surface nanopatterning of chalcogenide thin films: a novel approach toward solar cells with enhanced efficiency. Nano Letters, 15(5), 3334-3340. https://doi.org/10.1021/acs.nanolett.5b00584
Cu(In,Ga)Se<SUB>2</SUB> thin-film solar cells and modules―a boost in efficiency due to potassium
Reinhard, P., Pianezzi, F., Bissig, B., Chirilǎ, A., Blösch, P., Nishiwaki, S., … Tiwari, A. N. (2015). Cu(In,Ga)Se2 thin-film solar cells and modules―a boost in efficiency due to potassium. IEEE Journal of Photovoltaics, 5(2), 656-663. https://doi.org/10.1109/JPHOTOV.2014.2377516
Flexible Cu(In,Ga)Se<SUB>2</SUB> solar cells with reduced absorber thickness
Reinhard, P., Pianezzi, F., Kranz, L., Nishiwaki, S., Chirilǎ, A., Buecheler, S., & Tiwari, A. N. (2015). Flexible Cu(In,Ga)Se2 solar cells with reduced absorber thickness. Progress in Photovoltaics, 23(3), 281-289. https://doi.org/10.1002/pip.2420
Liquid-selenium-enhanced grain growth of nanoparticle precursor layers for CuInSe<SUB>2</SUB> solar cell absorbers
Uhl, A. R., Fuchs, P., Rieger, A., Pianezzi, F., Sutter-Fella, C. M., Kranz, L., … Tiwari, A. N. (2015). Liquid-selenium-enhanced grain growth of nanoparticle precursor layers for CuInSe2 solar cell absorbers. Progress in Photovoltaics, 23(9), 1110-1119. https://doi.org/10.1002/pip.2529
Cu<SUB>2</SUB>ZnSn(S,Se)<SUB>4</SUB> solar cell absorbers processed from Na-containing solutions in DMSO
Werner, M., Sutter-Fella, C. M., Hagendorfer, H., Romanyuk, Y. E., & Tiwari, A. N. (2015). Cu2ZnSn(S,Se)4 solar cell absorbers processed from Na-containing solutions in DMSO. Physica Status Solidi A: Applications and Materials, 212(1), 116-120. https://doi.org/10.1002/pssa.201431146