Active Filters

  • (-) Organizational Unit = 299 Electron Microscopy Center
  • (-) Publication Year = 2010 - 2019
  • (-) Keywords ≠ electron microscopy
  • (-) Organizational Unit = 501 Materials for Energy Conversion
Search Results 1 - 10 of 10
  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
The effect of activation time on water sorption behavior of nitrogen-doped, physically activated, monolithic carbon for adsorption cooling
Huber, L., Hauser, S. B., Brendlé, E., Ruch, P., Ammann, J., Hauert, R., … Koebel, M. M. (2019). The effect of activation time on water sorption behavior of nitrogen-doped, physically activated, monolithic carbon for adsorption cooling. Microporous and Mesoporous Materials, 276, 239-250. https://doi.org/10.1016/j.micromeso.2018.09.025
Epitaxial thin films as a model system for Li-Ion conductivity in Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>
Pagani, F., Stilp, E., Pfenninger, R., Reyes, E. C., Remhof, A., Balogh-Michels, Z., … Battaglia, C. (2018). Epitaxial thin films as a model system for Li-Ion conductivity in Li4Ti5O12. ACS Applied Materials and Interfaces, 10(51), 44494-44500. https://doi.org/10.1021/acsami.8b16519
A novel method for the synthesis of solvent-free Mg(B<SUB>3</SUB>H<SUB>8</SUB>)<SUB>2</SUB>
Huang, J., Yan, Y., Remhof, A., Zhang, Y., Rentsch, D., Au, Y. S., … Züttel, A. (2016). A novel method for the synthesis of solvent-free Mg(B3H8)2. Dalton Transactions, 45(9), 3687-3690. https://doi.org/10.1039/C5DT04517G
Water sorption behavior of physically and chemically activated monolithic nitrogen doped carbon for adsorption cooling
Huber, L., Ruch, P., Hauert, R., Matam, S. K., Saucke, G., Yoon, S., … Koebel, M. M. (2016). Water sorption behavior of physically and chemically activated monolithic nitrogen doped carbon for adsorption cooling. RSC Advances, 6(84), 80729-80738. https://doi.org/10.1039/C6RA18660B
Methanol steam reforming catalysts derived by reduction of perovskite-type oxides LaCo<SUB>1−<I>x−y</I></SUB>Pd<SUB><I>x</I></SUB>Zn<SUB><I>y</I></SUB>O<SUB>3±<I>δ</I></SUB>
Kuc, J., Neumann, M., Armbrüster, M., Yoon, S., Zhang, Y., Erni, R., … Matam, S. K. (2016). Methanol steam reforming catalysts derived by reduction of perovskite-type oxides LaCo1−x−yPdxZnyO3±δ. Catalysis Science and Technology, 6(5), 1455-1468. https://doi.org/10.1039/C5CY01410G
Composition dependent self-regenerative property of perovskite-type oxides
Kuc, J., Zhang, Y., Erni, R., Yoon, S., Karvonen, L., Weidenkaff, A., & Matam, S. K. (2015). Composition dependent self-regenerative property of perovskite-type oxides. Physica Status Solidi: Rapid Research Letters, 9(5), 282-287. https://doi.org/10.1002/pssr.201510072
The electrodeposition of FeCrNi stainless steel: microstructural changes induced by anode reactions
Hasegawa, M., Yoon, S., Guillonneau, G., Zhang, Y., Frantz, C., Niederberger, C., … Philippe, L. (2014). The electrodeposition of FeCrNi stainless steel: microstructural changes induced by anode reactions. Physical Chemistry Chemical Physics, 16(47), 26375-26384. https://doi.org/10.1039/C4CP03744H
Mesoporosity in photocatalytically active oxynitride single crystals
Pokrant, S., Cheynet, M. C., Irsen, S., Maegli, A. E., & Erni, R. (2014). Mesoporosity in photocatalytically active oxynitride single crystals. Journal of Physical Chemistry C, 118(36), 20940-20947. https://doi.org/10.1021/jp506597h
Sorption enhanced CO<SUB>2</SUB> methanation
Borgschulte, A., Gallandat, N., Probst, B., Suter, R., Callini, E., Ferri, D., … Züttel, A. (2013). Sorption enhanced CO2 methanation. Physical Chemistry Chemical Physics, 15(24), 9620-9625. https://doi.org/10.1039/c3cp51408k
CO<SUB>2</SUB> hydrogenation on a metal hydride surface
Kato, S., Borgschulte, A., Ferri, D., Bielmann, M., Crivello, J. C., Wiedenmann, D., … Züttel, A. (2012). CO2 hydrogenation on a metal hydride surface. Physical Chemistry Chemical Physics, 14(16), 5518-5526. https://doi.org/10.1039/C2CP23264B