Active Filters

  • (-) Empa Laboratories = 302 Cellulose & Wood Materials
  • (-) Publication Year = 2020
  • (-) Empa Authors ≠ Tran Ly, Anh
Search Results 1 - 20 of 59
Select Page
Atomic force microscopy imaging of delignified secondary cell walls in liquid conditions facilitates interpretation of wood ultrastructure
Adobes-Vidal, M., Frey, M., & Keplinger, T. (2020). Atomic force microscopy imaging of delignified secondary cell walls in liquid conditions facilitates interpretation of wood ultrastructure. Journal of Structural Biology, 211(2), 107532 (9 pp.). https://doi.org/10.1016/j.jsb.2020.107532
Structure-property relationships of cellulose nanofibril hydro- and aerogels and their building blocks
Arcari, M., Axelrod, R., Adamcik, J., Handschin, S., Sánchez-Ferrer, A., Mezzenga, R., & Nyström, G. (2020). Structure-property relationships of cellulose nanofibril hydro- and aerogels and their building blocks. Nanoscale, 12(21), 11638-11646. https://doi.org/10.1039/d0nr01362e
Comparison of the decay behavior of two white-rot fungi in relation to wood type and exposure conditions
Bari, E., Daniel, G., Yilgor, N., Kim, J. S., Tajick-Ghanbary, M. A., Singh, A. P., & Ribera, J. (2020). Comparison of the decay behavior of two white-rot fungi in relation to wood type and exposure conditions. Microorganisms, 8(12), 1931 (22 pp.). https://doi.org/10.3390/microorganisms8121931
Rebound of self-lubricating compound drops
Blanken, N., Saleem, M. S., Antonini, C., & Thoraval, M. J. (2020). Rebound of self-lubricating compound drops. Science Advances, 6(11), eaay3499 (11 pp.). https://doi.org/10.1126/sciadv.aay3499
Characterization of wood-adhesive bonds in wet conditions by means of nanoindentation and tensile shear strength
Bockel, S., Harling, S., Grönquist, P., Niemz, P., Pichelin, F., Weiland, G., & Konnerth, J. (2020). Characterization of wood-adhesive bonds in wet conditions by means of nanoindentation and tensile shear strength. European Journal of Wood and Wood Products, 78(3), 449-459. https://doi.org/10.1007/s00107-020-01520-1
Regulation of α-synuclein by chaperones in mammalian cells
Burmann, B. M., Gerez, J. A., Matečko-Burmann, I., Campioni, S., Kumari, P., Ghosh, D., … Hiller, S. (2020). Regulation of α-synuclein by chaperones in mammalian cells. Nature, 577(7788), 127-132. https://doi.org/10.1038/s41586-019-1808-9
A single touch can provide sufficient mechanical stimulation to trigger Venus flytrap closure
Burri, J. T., Saikia, E., Läubli, N. F., Vogler, H., Wittel, F. K., Rüggeberg, M., … Grossniklaus, U. (2020). A single touch can provide sufficient mechanical stimulation to trigger Venus flytrap closure. PLoS Biology, 18(7), e3000740 (19 pp.). https://doi.org/10.1371/journal.pbio.3000740
CELLULOSE SYNTHASE INTERACTING 1 is required for wood mechanics and leaf morphology in aspen
Bünder, A., Sundman, O., Mahboubi, A., Persson, S., Mansfield, S. D., Rüggeberg, M., & Niittylä, T. (2020). CELLULOSE SYNTHASE INTERACTING 1 is required for wood mechanics and leaf morphology in aspen. Plant Journal, 103, 1858-1868. https://doi.org/10.1111/tpj.14873
Interfaces determine the fate of seeded <em>α</em>-synuclein aggregation
Campioni, S., Bagnani, M., Pinotsi, D., Lecinski, S., Rodighiero, S., Adamcik, J., & Mezzenga, R. (2020). Interfaces determine the fate of seeded α-synuclein aggregation. Advanced Materials Interfaces, 7(11), 2000446 (9 pp.). https://doi.org/10.1002/admi.202000446
Effect of scattering correction in neutron imaging of hydrogenous samples using the black body approach
Carminati, C., Boillat, P., Laemmlein, S., Heckova, P., Snehota, M., Mannes, D., … Kaestner, A. (2020). Effect of scattering correction in neutron imaging of hydrogenous samples using the black body approach. In U. Garbe, F. Salvemini, & J. J. Bevitt (Eds.), Materials research proceedings: Vol. 15. Neutron radiography. WCNR-11 (pp. 174-179). https://doi.org/10.21741/9781644900574-27
Structure-property-function relationships of natural and engineered wood
Chen, C., Kuang, Y., Zhu, S., Burgert, I., Keplinger, T., Gong, A., … Hu, L. (2020). Structure-property-function relationships of natural and engineered wood. Nature Reviews Materials, 5, 624-666. https://doi.org/10.1038/s41578-020-0195-z
Assembly of cellulose nanocrystal-lysozyme composite films with varied lysozyme morphology
De France, K. J., Kummer, N., Ren, Q., Campioni, S., & Nyström, G. (2020). Assembly of cellulose nanocrystal-lysozyme composite films with varied lysozyme morphology. Biomacromolecules, 21(12), 5139-5146. https://doi.org/10.1021/acs.biomac.0c01267
Dual physically and chemically crosslinked regenerated cellulose – gelatin composite hydrogels towards art restoration
De France, K. J., D'Emilio, E., Cranston, E. D., Geiger, T., & Nyström, G. (2020). Dual physically and chemically crosslinked regenerated cellulose – gelatin composite hydrogels towards art restoration. Carbohydrate Polymers, 234, 115885 (10 pp.). https://doi.org/10.1016/j.carbpol.2020.115885
Mechanically reinforced injectable hydrogels
De France, K. J., Cranston, E. D., & Hoare, T. (2020). Mechanically reinforced injectable hydrogels. ACS Applied Polymer Materials, 2(3), 1016-1030. https://doi.org/10.1021/acsapm.9b00981
Janus wood membranes for autonomous water transport and fog collection
Ding, Y., Tu, K., Burgert, I., & Keplinger, T. (2020). Janus wood membranes for autonomous water transport and fog collection. Journal of Materials Chemistry A, 8(42), 22001-22008. https://doi.org/10.1039/d0ta07544b
Porous nanocellulose gels and foams: breakthrough status in the development of scaffolds for tissue engineering
Ferreira, F. V., Otoni, C. G., De France, K. J., Barud, H. S., Lona, L. M. F., Cranston, E. D., & Rojas, O. J. (2020). Porous nanocellulose gels and foams: breakthrough status in the development of scaffolds for tissue engineering. Materials Today, 137, 126-141. https://doi.org/10.1016/j.mattod.2020.03.003
Effect of coating systems as a barrier to humidity for lutherie woods studied by neutron radiography
Festa, G., Lämmlein, S. L., Senesi, R., Price, J., Chiesa, C., Scatigno, C., … Andreani, C. (2020). Effect of coating systems as a barrier to humidity for lutherie woods studied by neutron radiography. Journal of Cultural Heritage, 43, 255-260. https://doi.org/10.1016/j.culher.2019.11.004
Luminescent and hydrophobic wood films as optical lighting materials
Fu, Q., Tu, K., Goldhahn, C., Keplinger, T., Adobes-Vidal, M., Sorieul, M., & Burgert, I. (2020). Luminescent and hydrophobic wood films as optical lighting materials. ACS Nano, 14(10), 13775-13783. https://doi.org/10.1021/acsnano.0c06110
3D-printing nanocellulose-poly(3-hydroxybutyrate-<em>co</em>-3-hydroxyhexanoate) biodegradable composites by fused deposition modeling
Giubilini, A., Siqueira, G., Clemens, F. J., Sciancalepore, C., Messori, M., Nyström, G., & Bondioli, F. (2020). 3D-printing nanocellulose-poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biodegradable composites by fused deposition modeling. ACS Sustainable Chemistry and Engineering, 8(27), 10292-10302. https://doi.org/10.1021/acssuschemeng.0c03385
Lignin in bio-based liquid crystalline network material with potential for direct ink writing
Gleuwitz, F. R., Sivasankarapillai, G., Siqueira, G., Friedrich, C., & Laborie, M. P. G. (2020). Lignin in bio-based liquid crystalline network material with potential for direct ink writing. ACS Applied Bio Materials, 3(9), 6049-6058. https://doi.org/10.1021/acsabm.0c00661