Active Filters

  • (-) Organizational Unit = 306 Experimental Continuum Mechanics
Search Results 1 - 20 of 243

Pages

  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Tacticity in chiral phononic crystals
Bergamini, A., Miniaci, M., Delpero, T., Tallarico, D., Van Damme, B., Hannema, G., … Zemp, A. (2019). Tacticity in chiral phononic crystals. Nature Communications, 10, 4525 (8 pp.). https://doi.org/10.1038/s41467-019-12587-7
On the defect tolerance of fetal membranes
Bircher, K., Ehret, A. E., Spiess, D., Ehrbar, M., Simões-Wüst, A. P., Ochsenbein-Kölble, N., … Mazza, E. (2019). On the defect tolerance of fetal membranes. Interface Focus, 9(5), 20190010 (11 pp.). https://doi.org/10.1098/rsfs.2019.0010
Tear resistance of soft collagenous tissues
Bircher, K., Zündel, M., Pensalfini, M., Ehret, A. E., & Mazza, E. (2019). Tear resistance of soft collagenous tissues. Nature Communications, 10(1), 792 (13 pp.). https://doi.org/10.1038/s41467-019-08723-y
A 3D computational model of electrospun networks and its application to inform a reduced modelling approach
Domaschke, S., Zündel, M., Mazza, E., & Ehret, A. E. (2019). A 3D computational model of electrospun networks and its application to inform a reduced modelling approach. International Journal of Solids and Structures, 158, 76-89. https://doi.org/10.1016/j.ijsolstr.2018.08.030
Random auxetics from buckling fibre networks
Domaschke, S., Morel, A., Fortunato, G., & Ehret, A. E. (2019). Random auxetics from buckling fibre networks. Nature Communications, 10, 4863 (8 pp.). https://doi.org/10.1038/s41467-019-12757-7
An effective procedure for skin stiffness measurement to improve paediatric burn care
Elrod, J., Müller, B., Mohr, C., Meuli, M., Mazza, E., & Schiestl, C. (2019). An effective procedure for skin stiffness measurement to improve paediatric burn care. Burns, 45(5), 1102-1111. https://doi.org/10.1016/j.burns.2019.02.004
Force and collective epithelial activities
Ferrari, A., & Giampiertro, C. (2019). Force and collective epithelial activities. In C. A. M. La Porta & S. Zapperi (Eds.), Advances in experimental medicine and biology: Vol. 1146. Cell migrations: causes and functions (pp. 31-44). https://doi.org/10.1007/978-3-030-17593-1_3
Recent technological advancements in traction force microscopy
Ferrari, A. (2019). Recent technological advancements in traction force microscopy. Biophysical Reviews, 11(5), 679-681. https://doi.org/10.1007/s12551-019-00589-0
Science by the sea: how nanoengineering met mechanobiology in Camogli
Ferrari, A., Capitanio, M., Vassalli, M., & Martinac, B. (2019). Science by the sea: how nanoengineering met mechanobiology in Camogli. Biophysical Reviews, 11(5), 659-661. https://doi.org/10.1007/s12551-019-00598-z
Polymer membranes sonocoated and electrosprayed with nano-hydroxyapatite for periodontal tissues regeneration
Higuchi, J., Fortunato, G., Woźniak, B., Chodara, A., Domaschke, S., Męczyńska-Wielgosz, S., … Łojkowski, W. (2019). Polymer membranes sonocoated and electrosprayed with nano-hydroxyapatite for periodontal tissues regeneration. Nanomaterials, 9(11), 1625 (24 pp.). https://doi.org/10.3390/nano9111625
Creep-ductility of high temperature steels: a review
Holdsworth, S. (2019). Creep-ductility of high temperature steels: a review. Metals, 9(3), 342 (13 pp.). https://doi.org/10.3390/met9030342
Cellogram: on-the-fly traction force microscopy
Lendenmann, T., Schneider, T., Dumas, J., Tarini, M., Giampietro, C., Bajpai, A., … Panozzo, D. (2019). Cellogram: on-the-fly traction force microscopy. Nano Letters, 19(10), 6742-6750. https://doi.org/10.1021/acs.nanolett.9b01505
Optimized topological and topographical expansion of epithelia
Pramotton, F. M., Robotti, F., Giampietro, C., Lendenmann, T., Poulikakos, D., & Ferrari, A. (2019). Optimized topological and topographical expansion of epithelia. ACS Biomaterials Science & Engineering, 5(8), 3922-3934. https://doi.org/10.1021/acsbiomaterials.8b01346
Ice-templated W-Cu composites with high anisotropy
Röthlisberger, A., Häberli, S., Krogh, F., Galinski, H., Dunand, D. C., & Spolenak, R. (2019). Ice-templated W-Cu composites with high anisotropy. Scientific Reports, 9(1), 476 (9 pp.). https://doi.org/10.1038/s41598-018-36604-9
On the compressibility and poroelasticity of human and murine skin
Wahlsten, A., Pensalfini, M., Stracuzzi, A., Restivo, G., Hopf, R., & Mazza, E. (2019). On the compressibility and poroelasticity of human and murine skin. Biomechanics and Modeling in Mechanobiology, 18(4), 1079-1093. https://doi.org/10.1007/s10237-019-01129-1
Inverse methods
Weickenmeier, J., & Mazza, E. (2019). Inverse methods. In G. Limbert (Ed.), Studies in mechanobiology, tissue engineering and biomaterials (SMTEB): Vol. 22. Skin biophysics. From experimental characterisation to advanced modelling (pp. 193-213). https://doi.org/10.1007/978-3-030-13279-8_6
The multiscale stiffness of electrospun substrates and aspects of their mechanical biocompatibility
Zündel, M., Ehret, A. E., & Mazza, E. (2019). The multiscale stiffness of electrospun substrates and aspects of their mechanical biocompatibility. Acta Biomaterialia, 84, 146-158. https://doi.org/10.1016/j.actbio.2018.11.012
Honeycomb-structured metasurfaces for the adaptive nesting of endothelial cells under hemodynamic loads
Bachmann, B. J., Giampietro, C., Bayram, A., Stefopoulos, G., Michos, C., Graeber, G., … Ferrari, A. (2018). Honeycomb-structured metasurfaces for the adaptive nesting of endothelial cells under hemodynamic loads. Biomaterials Science, 6(10), 2726-2737. https://doi.org/10.1039/c8bm00660a
Adaptive reorientation of endothelial collectives in response to strain
Bernardi, L., Giampietro, C., Marina, V., Genta, M., Mazza, E., & Ferrari, A. (2018). Adaptive reorientation of endothelial collectives in response to strain. Integrative Biology, 10(9), 527-538. https://doi.org/10.1039/c8ib00092a
The effect of clamping conditions on tearing energy estimation for highly stretchable materials
Bernardi, L., Mazza, E., & Ehret, A. E. (2018). The effect of clamping conditions on tearing energy estimation for highly stretchable materials. Engineering Fracture Mechanics, 188, 300-308. https://doi.org/10.1016/j.engfracmech.2017.08.035
 

Pages