Active Filters

  • (-) Empa Laboratories = 100 Directorate
  • (-) Empa Authors ≠ Hirsch, Cordula
Search Results 1 - 20 of 142

Pages

  • RSS Feed
Select Page
Anisotropic, strong, and thermally insulating 3D‐printed nanocellulose–PNIPAAM aerogels
Nagel, Y., Sivaraman, D., Neels, A., Zimmermann, T., Zhao, S., Siqueira, G., & Nyström, G. (2023). Anisotropic, strong, and thermally insulating 3D‐printed nanocellulose–PNIPAAM aerogels. Small Structures, 4(12), 2300073 (9 pp.). https://doi.org/10.1002/sstr.202300073
3D bioprinting of diatom-laden living materials for water quality assessment
Boons, R., Siqueira, G., Grieder, F., Kim, S. J., Giovanoli, D., Zimmermann, T., … Studart, A. R. (2023). 3D bioprinting of diatom-laden living materials for water quality assessment. Small, 19(50), 2300771 (13 pp.). https://doi.org/10.1002/smll.202300771
Assessment of murine bone ultrastructure using synchrotron light - Towards nano-computed tomography
Schneider, P., Voide, R., Stauber, M., Stampanoni, M., Donahue, L. R., Wyss, P., … Müller, R. (2006). Assessment of murine bone ultrastructure using synchrotron light - Towards nano-computed tomography. In U. Bonse (Ed.), Proceedings of SPIE: Vol. 6318. Developments in X-ray tomography V (p. 63180C (9 pp.). https://doi.org/10.1117/12.679427
Site controlled nanotube shell etching for interlayer motion based NEMS
Subramanian, A., Choi, T. Y., Dong, L. X., Shou, K. Y., Tharian, J., Sennhauser, U., … Nelson, B. J. (2007). Site controlled nanotube shell etching for interlayer motion based NEMS. In Transducers '07 & Eurosensors XXI. 14th international conference on solid-state sensors, actuators and microsystems (pp. 1031-1034). https://doi.org/10.1109/SENSOR.2007.4300309
Functionalized cellulose nanocrystals as active reinforcements for light-actuated 3D-printed structures
Müller, L. A. E., Zingg, A., Arcifa, A., Zimmermann, T., Nyström, G., Burgert, I., & Siqueira, G. (2022). Functionalized cellulose nanocrystals as active reinforcements for light-actuated 3D-printed structures. ACS Nano, 16(11), 18210-18222. https://doi.org/10.1021/acsnano.2c05628
Membranes for the future
Meier, U. (2012). Membranes for the future. In M. Spina & M. Gow (Eds.), Material beyond materials. Composite tectonics (pp. 50-53). SCI-Arc Publications.
Non finito: challenges in rehabilitation
Meier, U. (2012). Non finito: challenges in rehabilitation. In M. N. Fardis (Ed.), Innovative materials and techniques in concrete construction. ACES workshop (pp. 1-16). https://doi.org/10.1007/978-94-007-1997-2_1
X-ray computed tomography for damage assessment of cultural heritage assets
Casali, F., Morigi, M. P., Brancaccio, R., Montefusco, L., Jerjen, I., Flisch, A., … Tiseanu, I. (2009). X-ray computed tomography for damage assessment of cultural heritage assets. In F. Mazzolani (Ed.), Protection of historical buildings (pp. 847-851). CRC Press.
A systematic review on the hazard assessment of amorphous silica based on the literature from 2013 to 2018
Krug, H. F. (2022). A systematic review on the hazard assessment of amorphous silica based on the literature from 2013 to 2018. Frontiers in Public Health, 10, 902893 (16 pp.). https://doi.org/10.3389/fpubh.2022.902893
Coulomb interaction engineering at YBa <sub>2</sub>Cu<sub>3</sub>O <sub>7</sub><sub>-</sub><sub>δ</sub>-SrTiO<sub>3</sub> interface
La Mattina, F., Erni, R., Rossell, M. D., Bona, G. L., & Shengelaya, A. (2022). Coulomb interaction engineering at YBa 2Cu3O 7-δ-SrTiO3 interface. Journal of Superconductivity and Novel Magnetism, 35(7), 1801-1805. https://doi.org/10.1007/s10948-022-06286-6
Câbles à base de fibres de carbone pour les ponts
Meier, U. (2006). Câbles à base de fibres de carbone pour les ponts. Textiles à usages techniques, 63, 26-33.
Architecture et ingénierie des ponts. Architecture and bridge engineering.
Meier, U. (2006). Architecture et ingénierie des ponts. Architecture and bridge engineering. Textiles à usages techniques, 62, 19-25.
New tools in risk assessment of nanomaterials
Krug, H. F. (2019). New tools in risk assessment of nanomaterials. NanoImpact, 16, 100189 (5 pp.). https://doi.org/10.1016/j.impact.2019.100189
World's first large bridge fully relying on carbon fiber reinforced polymer hangers
Meier, U. O., Winistörfer, A. U., & Haspel, L. (2021). World's first large bridge fully relying on carbon fiber reinforced polymer hangers. SAMPE journal, 57(1), 22-30.
Comparing the lung cancer burden of ambient particulate matter using scenarios of air quality standards versus acceptable risk levels
Castro, A., Götschi, T., Achermann, B., Baltensperger, U., Buchmann, B., Felber Dietrich, D., … Künzli, N. (2020). Comparing the lung cancer burden of ambient particulate matter using scenarios of air quality standards versus acceptable risk levels. International Journal of Public Health, 65(2), 139-148. https://doi.org/10.1007/s00038-019-01324-y
Risikopotenzial von Nanomaterialien
Fleischer, T., & Krug, H. F. (2009). Risikopotenzial von Nanomaterialien. Internistische Praxis, 49(2), 453-462.
Risikopotenzial von Nanomaterialien
Fleischer, T., & Krug, H. F. (2009). Risikopotenzial von Nanomaterialien. Chirurgische Praxis, 70(2), 389-398.
Risikopotenzial von Nanomaterialien
Fleischer, T., & Krug, H. F. (2009). Risikopotenzial von Nanomaterialien. Gynäkologische Praxis, 33(2), 389-398.
Carbon fiber reinforced polymer cables: why? why not? what if?
Meier, U. (2012). Carbon fiber reinforced polymer cables: why? why not? what if? Arabian Journal for Science and Engineering, 37(2), 399-411. https://doi.org/10.1007/s13369-012-0185-6
Governance zur Beurteilung der Gefährdung durch Nanomaterial am Arbeitsplatz. Ein Nachtrag zum 9. internationalen Nano-Behördendialog 2015
Schumacher, C., Krug, H. F., & Pipke, R. (2015). Governance zur Beurteilung der Gefährdung durch Nanomaterial am Arbeitsplatz. Ein Nachtrag zum 9. internationalen Nano-Behördendialog 2015. Gefahrstoffe, Reinhaltung der Luft, 75(10), 402-405.
 

Pages