Active Filters

  • (-) Organizational Unit = 312 Building Energy Materials and Components
  • (-) Publication Year = 2010 - 2018
Search Results 1 - 20 of 76

Pages

  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Enzyme functionalized electrospun chitosan mats for antimicrobial treatment
Bösiger, P., Tegl, G., Richard, I. M. T., Le Gat, L., Huber, L., Stagl, V., … Fortunato, G. (2018). Enzyme functionalized electrospun chitosan mats for antimicrobial treatment. Carbohydrate Polymers, 181, 551-559. https://doi.org/10.1016/j.carbpol.2017.12.002
Synthesis of high surface area TiO<sub><small>2</small></sub> aerogel support with Pt nanoparticle catalyst and CO oxidation study
Choi, H., Carboni, M., Kim, Y. K., Jung, C. H., Moon, S. Y., Koebel, M. M., & Park, J. Y. (2018). Synthesis of high surface area TiO2 aerogel support with Pt nanoparticle catalyst and CO oxidation study. Catalysis Letters, 148(5), 1504-1513. https://doi.org/10.1007/s10562-018-2355-y
Beyond unpredictability: the importance of reproducibility in understanding the protein corona of nanoparticles
Galmarini, S., Hanusch, U., Giraud, M., Cayla, N., Chiappe, D., Von Moos, N., … Maurizi, L. (2018). Beyond unpredictability: the importance of reproducibility in understanding the protein corona of nanoparticles. Bioconjugate Chemistry, 29(10), 3385-3393. https://doi.org/10.1021/acs.bioconjchem.8b00554
Reinforced and superinsulating silica aerogel through in situ cross-linking with silane terminated prepolymers
Iswar, S., Snellings, G. M. B. F., Zhao, S., Erni, R., Bahk, Y. K., Wang, J., … Malfait, W. J. (2018). Reinforced and superinsulating silica aerogel through in situ cross-linking with silane terminated prepolymers. Acta Materialia, 147, 322-328. https://doi.org/10.1016/j.actamat.2018.01.031
An atomistic building block description of C-S-H - towards a realistic C-S-H model
Kunhi Mohamed, A., Parker, S. C., Bowen, P., & Galmarini, S. (2018). An atomistic building block description of C-S-H - towards a realistic C-S-H model. Cement and Concrete Research, 107, 221-235. https://doi.org/10.1016/j.cemconres.2018.01.007
High efficiency thermoacoustic loudspeaker made with a silica aerogel substrate
La Torraca, P., Bobinger, M., Pavan, P., Becherer, M., Zhao, S., Koebel, M., … Larcher, L. (2018). High efficiency thermoacoustic loudspeaker made with a silica aerogel substrate. Advanced Materials Technologies, 3(8), 1800139 (6 pp.). https://doi.org/10.1002/admt.201800139
Controlling the surface structure of electrospun fibers: effect on endothelial cells and blood coagulation
Mertgen, A. S., Yazgan, G., Guex, A. G., Fortunato, G., Müller, E., Huber, L., … Rottmar, M. (2018). Controlling the surface structure of electrospun fibers: effect on endothelial cells and blood coagulation. Biointerphases: A Journal of Biomaterials and Biological Interfaces, 13(5), 051001 (10 pp.). https://doi.org/10.1116/1.5047668
Facile synthesis of resorcinol-melamine-formaldehyde based carbon xerogel
Muehlemann, S. E., Huber, L., Zhao, S., Matam, S. K., & Koebel, M. M. (2018). Facile synthesis of resorcinol-melamine-formaldehyde based carbon xerogel. In Vol. 5. Materials today: proceedings (pp. 13776-13784). https://doi.org/10.1016/j.matpr.2018.02.018
Influence of microfluidic flow rates on the propagation of nano/microcracks in liquid core and hollow fibers
Naeimirad, M., Zadhoush, A., Neisiany, R. E., Ramakrishna, S., Salimian, S., & Leal, A. A. (2018). Influence of microfluidic flow rates on the propagation of nano/microcracks in liquid core and hollow fibers. Theoretical and Applied Fracture Mechanics, 96, 83-89. https://doi.org/10.1016/j.tafmec.2018.04.001
Superhydrophobicity of nanofibrillated cellulose materials through polysiloxane nanofilaments
Orsolini, P., Antonini, C., Stojanovic, A., Malfait, W. J., Caseri, W. R., & Zimmermann, T. (2018). Superhydrophobicity of nanofibrillated cellulose materials through polysiloxane nanofilaments. Cellulose, 25(2), 1127-1146. https://doi.org/10.1007/s10570-017-1636-8
Evaluation of VIPs after mild artificial aging during 10 years: focus on the core behavior
Pons, E., Yrieix, B., & Brunner, S. (2018). Evaluation of VIPs after mild artificial aging during 10 years: focus on the core behavior. Energy and Buildings, 162, 198-207. https://doi.org/10.1016/j.enbuild.2017.12.016
A review on aerogel: 3D nanoporous structured fillers in polymer-based nanocomposites
Salimian, S., Zadhoush, A., Naeimirad, M., Kotek, R., & Ramakrishna, S. (2018). A review on aerogel: 3D nanoporous structured fillers in polymer-based nanocomposites. Polymer Composites, 39(10), 3383-3408. https://doi.org/10.1002/pc.24412
A review on new mesostructured composite materials: part I. synthesis of polymer-mesoporous silica nanocomposite
Salimian, S., Zadhoush, A., & Mohammadi, A. (2018). A review on new mesostructured composite materials: part I. synthesis of polymer-mesoporous silica nanocomposite. Journal of Reinforced Plastics and Composites, 37(7), 441-459. https://doi.org/10.1177/0731684417752081
A review on new mesostructured composite materials: part II. characterization and properties of polymer–mesoporous silica nanocomposite
Salimian, S., Zadhoush, A., & Mohammadi, A. (2018). A review on new mesostructured composite materials: part II. characterization and properties of polymer–mesoporous silica nanocomposite. Journal of Reinforced Plastics and Composites, 37(11), 738-769. https://doi.org/10.1177/0731684418760205
Fabrication and evaluation of silica aerogel-epoxy nanocomposites: fracture and toughening mechanisms
Salimian, S., Malfait, W. J., Zadhoush, A., Talebi, Z., & Naeimirad, M. (2018). Fabrication and evaluation of silica aerogel-epoxy nanocomposites: fracture and toughening mechanisms. Theoretical and Applied Fracture Mechanics, 97, 156-164. https://doi.org/10.1016/j.tafmec.2018.08.007
Silica aerogel–epoxy nanocomposites: understanding epoxy reinforcement in terms of aerogel surface chemistry and epoxy–silica interface compatibility
Salimian, S., Zadhoush, A., Talebi, Z., Fischer, B., Winiger, P., Winnefeld, F., … Malfait, W. J. (2018). Silica aerogel–epoxy nanocomposites: understanding epoxy reinforcement in terms of aerogel surface chemistry and epoxy–silica interface compatibility. ACS Applied Nano Materials, 1(8), 4179-4189. https://doi.org/10.1021/acsanm.8b00941
Hydrophobic TiO<sub>2</sub>-SiO<sub>2</sub> aerogel composites for fast removal of organic pollutants
Xu, H., Jia, J., Zhao, S., Chen, P., Xia, Q., Wu, J., & Zhu, P. (2018). Hydrophobic TiO2-SiO2 aerogel composites for fast removal of organic pollutants. Chemistry Select, 3(37), 10483-10490. https://doi.org/10.1002/slct.201801646
Biopolymer aerogels and foams: chemistry, properties, and applications
Zhao, S., Malfait, W. J., Guerrero-Alburquerque, N., Koebel, M. M., & Nyström, G. (2018). Biopolymer aerogels and foams: chemistry, properties, and applications. Angewandte Chemie International Edition, 57(26), 7580-7608. https://doi.org/10.1002/anie.201709014
Biopolymer-Aerogele und -Schäume: Chemie, Eigenschaften und Anwendungen
Zhao, S., Malfait, W. J., Guerrero-Alburquerque, N., Koebel, M. M., & Nyström, G. (2018). Biopolymer-Aerogele und -Schäume: Chemie, Eigenschaften und Anwendungen. Angewandte Chemie, 130(26), 7704-7733. https://doi.org/10.1002/ange.201709014
Merging flexibility with superinsulation: machinable, nanofibrous pullulan-silica aerogel composites
Zhao, S., Emery, O., Wohlhauser, A., Koebel, M. M., Adlhart, C., & Malfait, W. J. (2018). Merging flexibility with superinsulation: machinable, nanofibrous pullulan-silica aerogel composites. Materials and Design, 160, 294-302. https://doi.org/10.1016/j.matdes.2018.09.010
 

Pages