Active Filters

  • (-) Organizational Unit = 313 Urban Energy Systems
  • (-) Publication Year = 2020 - 2020
Search Results 1 - 20 of 23
Select Page
Speed-optimized simulation models for rapid performance evaluation of heating and energy management systems
Allan, J., Boegli, M., Bollinger, A., Alet, P. J., & Wiget, M. (2020). Speed-optimized simulation models for rapid performance evaluation of heating and energy management systems. In V. Corrado, E. Fabrizio, A. Gasparella, & F. Patuzzi (Eds.), Proceedings of the international building performance simulation association: Vol. 16. Proceedings of building simulation 2019: 16th conference of IBPSA (pp. 3668-3675). https://doi.org/10.26868/25222708.2019.210997
Seasonal energy flexibility through integration of liquid sorption storage in buildings
Baldini, L., & Fumey, B. (2020). Seasonal energy flexibility through integration of liquid sorption storage in buildings. Energies, 13(11), 2944 (13 pp.). https://doi.org/10.3390/en13112944
ReMaP: Forschungsplattform für Multienergiesysteme
Boulouchos, K., Brenzikofer, A., Demiray, T., von Euw, M., Flamm, B., Haselbacher, A., … Ulbig, A. (2020). ReMaP: Forschungsplattform für Multienergiesysteme. Aqua & Gas, 100(9), 14-21.
Experimental demonstration of data predictive control for energy optimization and thermal comfort in buildings
Bünning, F., Huber, B., Heer, P., Aboudonia, A., & Lygeros, J. (2020). Experimental demonstration of data predictive control for energy optimization and thermal comfort in buildings. Energy and Buildings, 211, 109792 (8 pp.). https://doi.org/10.1016/j.enbuild.2020.109792
Improved day ahead heating demand forecasting by online correction methods
Bünning, F., Heer, P., Smith, R. S., & Lygeros, J. (2020). Improved day ahead heating demand forecasting by online correction methods. Energy and Buildings, 211, 109821 (13 pp.). https://doi.org/10.1016/j.enbuild.2020.109821
How weather affects energy demand variability in the transition towards sustainable heating
Eggimann, S., Usher, W., Eyre, N., & Hall, J. W. (2020). How weather affects energy demand variability in the transition towards sustainable heating. Energy, 195, 116947 (11 pp.). https://doi.org/10.1016/j.energy.2020.116947
On the impact of internal gains and comfort band on the effectiveness of building thermal zoning
Fiorentini, M., Ledo Gomis, L., Chen, D., & Cooper, P. (2020). On the impact of internal gains and comfort band on the effectiveness of building thermal zoning. Energy and Buildings, 225, 110320 (10 pp.). https://doi.org/10.1016/j.enbuild.2020.110320
Water transport in aqueous sodium hydroxide films for liquid sorption heat storage
Fumey, B., Baldini, L., & Borgschulte, A. (2020). Water transport in aqueous sodium hydroxide films for liquid sorption heat storage. Energy Technology, 2000187 (8 pp.). https://doi.org/10.1002/ente.202000187
A moment and sum-of-squares extension of dual dynamic programming with application to nonlinear energy storage problems
Hohmann, M., Warrington, J., & Lygeros, J. (2020). A moment and sum-of-squares extension of dual dynamic programming with application to nonlinear energy storage problems. European Journal of Operational Research, 283(1), 16-32. https://doi.org/10.1016/j.ejor.2019.10.041
Evaluation of the humidity performance of a carbon dioxide (CO<sub>2</sub>) capture device as a novel ventilation strategy in buildings
Kim, M. K., Baldini, L., Leibundgut, H., & Wurzbacher, J. A. (2020). Evaluation of the humidity performance of a carbon dioxide (CO2) capture device as a novel ventilation strategy in buildings. Applied Energy, 259, 112869 (11 pp.). https://doi.org/10.1016/j.apenergy.2019.03.074
Multi-objective optimisation of power-to-mobility in decentralised multi-energy systems
Murray, P., Carmeliet, J., & Orehounig, K. (2020). Multi-objective optimisation of power-to-mobility in decentralised multi-energy systems. Energy, 205, 117792 (15 pp.). https://doi.org/10.1016/j.energy.2020.117792
Optimal transformation strategies for buildings, neighbourhoods and districts to reach CO<sub>2</sub> emission reduction targets
Murray, P., Marquant, J., Niffeler, M., Mavromatidis, G., & Orehounig, K. (2020). Optimal transformation strategies for buildings, neighbourhoods and districts to reach CO2 emission reduction targets. Energy and Buildings, 207, 109569 (34 pp.). https://doi.org/10.1016/j.enbuild.2019.109569
Introducing reinforcement learning to the energy system design process
Perera, A. T. D., Wickramasinghe, P. U., Nik, V. M., & Scartezzini, J. L. (2020). Introducing reinforcement learning to the energy system design process. Applied Energy, 262, 114580 (14 pp.). https://doi.org/10.1016/j.apenergy.2020.114580
Quantifying the impacts of climate change and extreme climate events on energy systems
Perera, A. T. D., Nik, V. M., Chen, D., Scartezzini, J. L., & Hong, T. (2020). Quantifying the impacts of climate change and extreme climate events on energy systems. Nature Energy, 5(2), 150-159. https://doi.org/10.1038/s41560-020-0558-0
SHED Swiss Hub for Energy Data. Teil einer nationalen Energie-Dateninfrastruktur und Wegbereiter für Energiestrategie 2050, Klimaschutz und digitale Innovationen
Petry, J., Holdener, M., Sulzer, M., & Werlen, K. (2020). SHED Swiss Hub for Energy Data. Teil einer nationalen Energie-Dateninfrastruktur und Wegbereiter für Energiestrategie 2050, Klimaschutz und digitale Innovationen. (Report No.: SI/501857-01). sine nomine.
The reservoir network: a new network topology for district heating and cooling
Sommer, T., Sulzer, M., Wetter, M., Sotnikov, A., Mennel, S., & Stettler, C. (2020). The reservoir network: a new network topology for district heating and cooling. Energy, 199, 117418 (13 pp.). https://doi.org/10.1016/j.energy.2020.117418
Energieeffizienz – best in class
Sulzer, M. (2020). Energieeffizienz – best in class. In Zug Estates AG (Ed.), Suurstoffi - Eine Quartierentwicklung in Rotkreuz (pp. 156-157). Zug Estates AG.
Komplexität ist die neue Einfachheit. Wie Sektorenkopplung und Netzkonvergenz zu eleganten Lösungen führen
Sulzer, M., Orehounig, K., & Bollinger, A. (2020). Komplexität ist die neue Einfachheit. Wie Sektorenkopplung und Netzkonvergenz zu eleganten Lösungen führen. Aqua & Gas, 100(9), 23-28.
Komplexität ist die neue Einfachheit. Wie Sektorenkopplung und Netzkonvergenz zu eleganten Lösungen führen
Sulzer, M., Orehounig, K., & Bollinger, A. (2020). Komplexität ist die neue Einfachheit. Wie Sektorenkopplung und Netzkonvergenz zu eleganten Lösungen führen. Aqua & Gas, 100(9), 23-28.
Paradigm shifts for the Swiss building sector to shape the future energy system
Sulzer, M. (2020). Paradigm shifts for the Swiss building sector to shape the future energy system. Swiss Competence Center for Energy Research.