Active Filters

  • (-) Empa Laboratories = 401 Biomimetic Membranes and Textiles
  • (-) Publication Year = 2006 - 2019
  • (-) Empa Laboratories ≠ 209 Functional Polymers
  • (-) Empa Authors = Fortunato, Giuseppino
Search Results 1 - 20 of 67

Pages

  • RSS Feed
Select Page
On-demand drug release from tailored blended electrospun nanofibers
Amarjargal, A., Brunelli, M., Fortunato, G., Spano, F., Kim, C. S., & Rossi, R. M. (2019). On-demand drug release from tailored blended electrospun nanofibers. Journal of Drug Delivery Science and Technology, 52, 8-14. https://doi.org/10.1016/j.jddst.2019.04.004
A facile method for controlled fabrication of hybrid silver nanoparticle-poly(ε<em>-caprolactone) fibrous constructs with antimicrobial properties</em>
Bhullar, S. K., Ruzgar, D. G., Fortunato, G., Aneja, G. K., Orhan, M., Saber-Samandari, S., … Ramalingam, M. (2019). A facile method for controlled fabrication of hybrid silver nanoparticle-poly(ε-caprolactone) fibrous constructs with antimicrobial properties. Journal of Nanoscience and Nanotechnology, 19(11), 6949-6955. https://doi.org/10.1166/jnn.2019.16641
Wearable flexible sweat sensors for healthcare monitoring: a review
Chung, M., Fortunato, G., & Radacsi, N. (2019). Wearable flexible sweat sensors for healthcare monitoring: a review. Journal of the Royal Society Interface, 16(159), 20190217 (15 pp.). https://doi.org/10.1098/rsif.2019.0217
Random auxetics from buckling fibre networks
Domaschke, S., Morel, A., Fortunato, G., & Ehret, A. E. (2019). Random auxetics from buckling fibre networks. Nature Communications, 10, 4863 (8 pp.). https://doi.org/10.1038/s41467-019-12757-7
Polymer membranes sonocoated and electrosprayed with nano-hydroxyapatite for periodontal tissues regeneration
Higuchi, J., Fortunato, G., Woźniak, B., Chodara, A., Domaschke, S., Męczyńska-Wielgosz, S., … Łojkowski, W. (2019). Polymer membranes sonocoated and electrosprayed with nano-hydroxyapatite for periodontal tissues regeneration. Nanomaterials, 9(11), 1625 (24 pp.). https://doi.org/10.3390/nano9111625
Crosslinking dextran electrospun nanofibers via borate chemistry: proof of concept for wound patches
Innocenti Malini, R., Lesage, J., Toncelli, C., Fortunato, G., Rossi, R. M., & Spano, F. (2019). Crosslinking dextran electrospun nanofibers via borate chemistry: proof of concept for wound patches. European Polymer Journal, 110, 276-282. https://doi.org/10.1016/j.eurpolymj.2018.11.017
Nozzle-free electrospinning of Polyvinylpyrrolidone/Poly(glycerol sebacate) fibrous scaffolds for skin tissue engineering applications
Keirouz, A., Fortunato, G., Zhang, M., Callanan, A., & Radacsi, N. (2019). Nozzle-free electrospinning of Polyvinylpyrrolidone/Poly(glycerol sebacate) fibrous scaffolds for skin tissue engineering applications. Medical Engineering and Physics, 71, 56-67. https://doi.org/10.1016/j.medengphy.2019.06.009
Electrospray-based microencapsulation of epigallocatechin 3-gallate for local delivery into the intervertebral disc
Loepfe, M., Duss, A., Zafeiropoulou, K. A., Björgvinsdóttir, O., D’Este, M., Eglin, D., … Krupkova, O. (2019). Electrospray-based microencapsulation of epigallocatechin 3-gallate for local delivery into the intervertebral disc. Pharmaceutics, 11(9), 435 (15 pp.). https://doi.org/10.3390/pharmaceutics11090435
Engineering the bioactivity of flame-made ceria and ceria/bioglass hybrid nanoparticles
Matter, M. T., Furer, L. A., Starsich, F. H. L., Fortunato, G., Pratsinis, S. E., & Herrmann, I. K. (2019). Engineering the bioactivity of flame-made ceria and ceria/bioglass hybrid nanoparticles. ACS Applied Materials and Interfaces, 11(3), 2830-2839. https://doi.org/10.1021/acsami.8b18778
Structural insights into semicrystalline states of electrospun nanofibers: a multiscale analytical approach
Maurya, A. K., Weidenbacher, L., Spano, F., Fortunato, G., Rossi, R. M., Frenz, M., … Sadeghpour, A. (2019). Structural insights into semicrystalline states of electrospun nanofibers: a multiscale analytical approach. Nanoscale, 11(15), 7176-7187. https://doi.org/10.1039/C9NR00446G
Revealing non-crystalline polymer superstructures within electrospun fibers through solvent-induced phase rearrangements
Morel, A., Oberle, S. C., Ulrich, S., Yazgan, G., Spano, F., Ferguson, S. J., … Rossi, R. M. (2019). Revealing non-crystalline polymer superstructures within electrospun fibers through solvent-induced phase rearrangements. Nanoscale, 11(36), 16788-16800. https://doi.org/10.1039/C9NR04432A
Cell membrane-inspired silicone interfaces that mitigate pro-inflammatory macrophage activation and bacterial adhesion
Qin, X. H., Senturk, B., Valentin, J., Malheiro, V., Fortunato, G., Ren, Q., … Maniura-Weber, K. (2019). Cell membrane-inspired silicone interfaces that mitigate pro-inflammatory macrophage activation and bacterial adhesion. Langmuir, 35(5), 1882-1894. https://doi.org/10.1021/acs.langmuir.8b02292
Mechanical properties of medical textiles
Rossi, R. M., Fortunato, G., Nedjari, S., Morel, A., Heim, F., Osselin, J. F., & Bueno, M. A. (2019). Mechanical properties of medical textiles. In P. Schwartz (Ed.), The textile institute book series. Structure and mechanics of textile fibre assemblies (pp. 301-340). https://doi.org/10.1016/B978-0-08-102619-9.00009-2
In vitro endothelialization of surface-integrated nanofiber networks for stretchable blood interfaces
Weidenbacher, L., Müller, E., Guex, A. G., Zündel, M., Schweizer, P., Marina, V., … Fortunato, G. (2019). In vitro endothelialization of surface-integrated nanofiber networks for stretchable blood interfaces. ACS Applied Materials and Interfaces, 11(6), 5740-5751. https://doi.org/10.1021/acsami.8b18121
Application of response surface methodology to tailor the surface chemistry of electrospun chitosan-poly(ethylene oxide) fibers
Bösiger, P., Richard, I. M. T., LeGat, L., Michen, B., Schubert, M., Rossi, R. M., & Fortunato, G. (2018). Application of response surface methodology to tailor the surface chemistry of electrospun chitosan-poly(ethylene oxide) fibers. Carbohydrate Polymers, 186, 122-131. https://doi.org/10.1016/j.carbpol.2018.01.038
Enzyme functionalized electrospun chitosan mats for antimicrobial treatment
Bösiger, P., Tegl, G., Richard, I. M. T., Le Gat, L., Huber, L., Stagl, V., … Fortunato, G. (2018). Enzyme functionalized electrospun chitosan mats for antimicrobial treatment. Carbohydrate Polymers, 181, 551-559. https://doi.org/10.1016/j.carbpol.2017.12.002
Catechin loaded PLGA submicron-sized fibers reduce levels of reactive oxygen species induced by MWCNT <i>in vitro</i>
Ghitescu, R. E., Popa, A. M., Schipanski, A., Hirsch, C., Yazgan, G., Popa, V. I., … Fortunato, G. (2018). Catechin loaded PLGA submicron-sized fibers reduce levels of reactive oxygen species induced by MWCNT in vitro. European Journal of Pharmaceutics and Biopharmaceutics, 122, 78-86. https://doi.org/10.1016/j.ejpb.2017.10.009
Facile meltPEGylation of flame-made luminescent Tb<sup>3+</sup>-doped yttrium oxide particles: hemocompatibility, cellular uptake and comparison to silica
Keevend, K., Panzarasa, G., Starsich, F. H. L., Zeltner, M., Spyrogianni, A., Tsolaki, E., … Herrmann, I. K. (2018). Facile meltPEGylation of flame-made luminescent Tb3+-doped yttrium oxide particles: hemocompatibility, cellular uptake and comparison to silica. Chemical Communications, 54(23), 2914-2917. https://doi.org/10.1039/c7cc09402g
Correlating diameter, mechanical and structural properties of poly (<small>L</small>-lactide) fibres from needleless electrospinning
Morel, A., Domaschke, S., Urundolil Kumaran, V., Alexeev, D., Sadeghpour, A., Ramakrishna, S. N., … Fortunato, G. (2018). Correlating diameter, mechanical and structural properties of poly (L-lactide) fibres from needleless electrospinning. Acta Biomaterialia, 81, 169-183. https://doi.org/10.1016/j.actbio.2018.09.055
Facile optimization of thermoelectric properties in PEDOT:PSS thin films through acido-base and redox dedoping using readily available salts
Saxena, N., Keilhofer, J., Maurya, A. K., Fortunato, G., Overbeck, J., & Müller-Buschbaum, P. (2018). Facile optimization of thermoelectric properties in PEDOT:PSS thin films through acido-base and redox dedoping using readily available salts. ACS Applied Energy Materials, 1(2), 336-342. https://doi.org/10.1021/acsaem.7b00334
 

Pages