Active Filters

  • (-) Organizational Unit = 403 Particles-Biology Interactions
  • (-) Publication Year = 2019 - 2019
Search Results 1 - 10 of 10
  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Investigating the accumulation and translocation of titanium dioxide nanoparticles with different surface modifications in static and dynamic human placental transfer models
Aengenheister, L., Batbajar Dugershaw, B., Manser, P., Wichser, A., Schoenenberger, R., Wick, P., … Buerki-Thurnherr, T. (2019). Investigating the accumulation and translocation of titanium dioxide nanoparticles with different surface modifications in static and dynamic human placental transfer models. European Journal of Pharmaceutics and Biopharmaceutics, (25 pp.). https://doi.org/10.1016/j.ejpb.2019.07.018
On the issue of transparency and reproducibility in nanomedicine
Butler, K. S., Leong, H. S., Brinker, C. J., Azzawi, M., Conlan, S., Dufés, C., … Pastore, C. (2019). On the issue of transparency and reproducibility in nanomedicine. Nature Nanotechnology, 14(7), 629-635. https://doi.org/10.1038/s41565-019-0496-9
Measuring particle size distribution of nanoparticle enabled medicinal products, the joint view of EUNCL and NCI-NCL. A step by step approach combining orthogonal measurements with increasing complexity
Caputo, F., Clogston, J., Calzolai, L., Rösslein, M., & Prina-Mello, A. (2019). Measuring particle size distribution of nanoparticle enabled medicinal products, the joint view of EUNCL and NCI-NCL. A step by step approach combining orthogonal measurements with increasing complexity. Journal of Controlled Release, 299, 31-43. https://doi.org/10.1016/j.jconrel.2019.02.030
Micronized copper-treated wood: copper remobilization into spores from the copper-tolerant wood-destroying fungus <i>Rhodonia placenta</i>
Civardi, C., Grolimund, D., Schubert, M., Wick, P., & Schwarze, F. W. M. R. (2019). Micronized copper-treated wood: copper remobilization into spores from the copper-tolerant wood-destroying fungus Rhodonia placenta. Environmental Science: Nano, 6(2), 425-431. https://doi.org/10.1039/C8EN01110A
Lanthanide-doped hafnia nanoparticles for multimodal theranostics: tailoring the physicochemical properties and interactions with biological entities
Gerken, L. R. H., Keevend, K., Zhang, Y., Starsich, F. H. L., Eberhardt, C., Panzarasa, G., … Herrmann, I. K. (2019). Lanthanide-doped hafnia nanoparticles for multimodal theranostics: tailoring the physicochemical properties and interactions with biological entities. ACS Applied Materials and Interfaces, 11(1), 437-448. https://doi.org/10.1021/acsami.8b20334
Bridging communities in the field of nanomedicine
Halamoda-Kenzaoui, B., Baconnier, S., Bastogne, T., Bazile, D., Boisseau, P., Borchard, G., … Bremer-Hoffmann, S. (2019). Bridging communities in the field of nanomedicine. Regulatory Toxicology and Pharmacology, 106, 187-196. https://doi.org/10.1016/j.yrtph.2019.04.011
Multi-element chemical analysis of printed circuit boards – challenges and pitfalls
Korf, N., Løvik, A. N., Figi, R., Schreiner, C., Kuntz, C., Mählitz, P. M., … Rotter, V. S. (2019). Multi-element chemical analysis of printed circuit boards – challenges and pitfalls. Waste Management, 92, 124-136. https://doi.org/10.1016/j.wasman.2019.04.061
Engineering the bioactivity of flame-made ceria and ceria/bioglass hybrid nanoparticles
Matter, M. T., Furer, L. A., Starsich, F. H. L., Fortunato, G., Pratsinis, S. E., & Herrmann, I. K. (2019). Engineering the bioactivity of flame-made ceria and ceria/bioglass hybrid nanoparticles. ACS Applied Materials and Interfaces, 11(3), 2830-2839. https://doi.org/10.1021/acsami.8b18778
Artificial lysosomal platform to study nanoparticle long-term stability
Milosevic, A., Bourquin, J., Burnand, D., Lemal, P., Crippa, F., Monnier, C. A., … Rothen-Rutishauser, B. (2019). Artificial lysosomal platform to study nanoparticle long-term stability. Chimia, 73(1), 55-58. https://doi.org/10.2533/chimia.2019.55
Physical structuring of injectable polymeric systems to controllably deliver nanosized extracellular vesicles
Nikravesh, N., Davies, O. G., Azoidis, I., Moakes, R. J. A., Marani, L., Turner, M., … Cox, S. C. (2019). Physical structuring of injectable polymeric systems to controllably deliver nanosized extracellular vesicles. Advanced Healthcare Materials. https://doi.org/10.1002/adhm.201801604