Active Filters

  • (-) Empa Laboratories = 403 Particles-Biology Interactions
  • (-) Publication Year = 2019
  • (-) Journal ≠ RSC Advances
Search Results 1 - 20 of 29
Select Page
Investigating the accumulation and translocation of titanium dioxide nanoparticles with different surface modifications in static and dynamic human placental transfer models
Aengenheister, L., Batbajar Dugershaw, B., Manser, P., Wichser, A., Schoenenberger, R., Wick, P., … Buerki-Thurnherr, T. (2019). Investigating the accumulation and translocation of titanium dioxide nanoparticles with different surface modifications in static and dynamic human placental transfer models. European Journal of Pharmaceutics and Biopharmaceutics, 142, 488-497. https://doi.org/10.1016/j.ejpb.2019.07.018
Nano-analytical characterization of endogenous minerals in healthy placental tissue: mineral distribution, composition and ultrastructure
Anthis, A. H. C., Tsolaki, E., Didierlaurent, L., Staubli, S., Zboray, R., Neels, A., … Herrmann, I. K. (2019). Nano-analytical characterization of endogenous minerals in healthy placental tissue: mineral distribution, composition and ultrastructure. Analyst, 144, 6850-6857. https://doi.org/10.1039/C9AN01312A
Tailoring the colloidal stability, magnetic separability and  cytocompatibility of high-capacity magnetic anion exchangers
Anthis, A. H. C., Matter, M. T., Keevend, K., Gerken, L. R. H., Scheibler, S., Doswald, S., … Herrmann, I. K. (2019). Tailoring the colloidal stability, magnetic separability and  cytocompatibility of high-capacity magnetic anion exchangers. ACS Applied Materials and Interfaces, 11(51), 48341-48351. https://doi.org/10.1021/acsami.9b16619
Measuring particle size distribution of nanoparticle enabled medicinal products, the joint view of EUNCL and NCI-NCL. A step by step approach combining orthogonal measurements with increasing complexity
Caputo, F., Clogston, J., Calzolai, L., Rösslein, M., & Prina-Mello, A. (2019). Measuring particle size distribution of nanoparticle enabled medicinal products, the joint view of EUNCL and NCI-NCL. A step by step approach combining orthogonal measurements with increasing complexity. Journal of Controlled Release, 299, 31-43. https://doi.org/10.1016/j.jconrel.2019.02.030
Molecular modeling for nanomaterial-biology interactions: opportunities, challenges, and perspectives
Casalini, T., Limongelli, V., Schmutz, M., Som, C., Jordan, O., Wick, P., … Perale, G. (2019). Molecular modeling for nanomaterial-biology interactions: opportunities, challenges, and perspectives. Frontiers in Bioengineering and Biotechnology, 7, 268 (14 pp.). https://doi.org/10.3389/fbioe.2019.00268
Micronized copper-treated wood: copper remobilization into spores from the copper-tolerant wood-destroying fungus <i>Rhodonia placenta</i>
Civardi, C., Grolimund, D., Schubert, M., Wick, P., & Schwarze, F. W. M. R. (2019). Micronized copper-treated wood: copper remobilization into spores from the copper-tolerant wood-destroying fungus Rhodonia placenta. Environmental Science: Nano, 6(2), 425-431. https://doi.org/10.1039/C8EN01110A
Lanthanide-doped hafnia nanoparticles for multimodal theranostics: tailoring the physicochemical properties and interactions with biological entities
Gerken, L. R. H., Keevend, K., Zhang, Y., Starsich, F. H. L., Eberhardt, C., Panzarasa, G., … Herrmann, I. K. (2019). Lanthanide-doped hafnia nanoparticles for multimodal theranostics: tailoring the physicochemical properties and interactions with biological entities. ACS Applied Materials and Interfaces, 11(1), 437-448. https://doi.org/10.1021/acsami.8b20334
Supramolecular insights into domino effects of Ag@ZnO-induced oxidative stress in melanoma cancer cells
Ghaemi, B., Moshiri, A., Herrmann, I. K., Hajipour, M. J., Wick, P., Amani, A., & Kharrazi, S. (2019). Supramolecular insights into domino effects of Ag@ZnO-induced oxidative stress in melanoma cancer cells. ACS Applied Materials and Interfaces, 11(15), 46408-46418. https://doi.org/10.1021/acsami.9b13420
Anticipation of regulatory needs for nanotechnology-enabled health products. The REFINE white paper
Halamoda-Kenzaoui, B., Box, H., van Elk, M., Gaitan, S., Geertsma, R. E., Gainza Lafuente, E., … Bremer-Hoffmann, S. (2019). Anticipation of regulatory needs for nanotechnology-enabled health products. The REFINE white paper. Publications Office of the European Union. https://doi.org/10.2760/596822
Bridging communities in the field of nanomedicine
Halamoda-Kenzaoui, B., Baconnier, S., Bastogne, T., Bazile, D., Boisseau, P., Borchard, G., … Bremer-Hoffmann, S. (2019). Bridging communities in the field of nanomedicine. Regulatory Toxicology and Pharmacology, 106, 187-196. https://doi.org/10.1016/j.yrtph.2019.04.011
Multi-endpoint toxicological assessment of polystyrene nano- and microparticles in different biological models &lt;em&gt;in vitro&lt;/em&gt;
Hesler, M., Aengenheister, L., Ellinger, B., Drexel, R., Straskraba, S., Jost, C., … Kohl, Y. (2019). Multi-endpoint toxicological assessment of polystyrene nano- and microparticles in different biological models in vitro. Toxicology in Vitro, 61, 104610 (15 pp.). https://doi.org/10.1016/j.tiv.2019.104610
&lt;em&gt;In vitro&lt;/em&gt; research reproducibility: keeping up high standards
Hirsch, C., & Schildknecht, S. (2019). In vitro research reproducibility: keeping up high standards. Frontiers in Pharmacology, 10, 1484 (9 pp.). https://doi.org/10.3389/fphar.2019.01484
Polymer-coated gold nanospheres do not impair the innate immune function of human B lymphocytes &lt;em&gt;in vitro&lt;/em&gt;
Hočevar, S., Milošević, A., Rodriguez-Lorenzo, L., Ackermann-Hirschi, L., Mottas, I., Petri-Fink, A., … Clift, M. J. D. (2019). Polymer-coated gold nanospheres do not impair the innate immune function of human B lymphocytes in vitro. ACS Nano, 13(6), 6790-6800. https://doi.org/10.1021/acsnano.9b01492
Hazard assessment of polymeric nanobiomaterials for drug delivery: what can we learn from literature so far
Jesus, S., Schmutz, M., Som, C., Borchard, G., Wick, P., & Borges, O. (2019). Hazard assessment of polymeric nanobiomaterials for drug delivery: what can we learn from literature so far. Frontiers in Bioengineering and Biotechnology, 7, 261 (37 pp.). https://doi.org/10.3389/fbioe.2019.00261
Inorganic nanoparticles for correlative cathodoluminescence electron microscopy bioimaging
Keevend, K. (2019). Inorganic nanoparticles for correlative cathodoluminescence electron microscopy bioimaging [Doctoral dissertation]. ETH Zürich.
Ultrabright and stable luminescent labels for correlative cathodoluminescence electron microscopy (CCLEM) bioimaging
Keevend, K., Puust, L., Kurvits, K., Gerken, L. R. H., Starsich, F. H. L., Li, J. H., … Herrmann, I. K. (2019). Ultrabright and stable luminescent labels for correlative cathodoluminescence electron microscopy (CCLEM) bioimaging. Nano Letters, 19(9), 6013-6018. https://doi.org/10.1021/acs.nanolett.9b01819
Multi-element chemical analysis of printed circuit boards – challenges and pitfalls
Korf, N., Løvik, A. N., Figi, R., Schreiner, C., Kuntz, C., Mählitz, P. M., … Rotter, V. S. (2019). Multi-element chemical analysis of printed circuit boards – challenges and pitfalls. Waste Management, 92, 124-136. https://doi.org/10.1016/j.wasman.2019.04.061
On the issue of transparency and reproducibility in nanomedicine
Leong, H. S., Butler, K. S., Brinker, C. J., Azzawi, M., Conlan, S., Dufés, C., … Pastore, C. (2019). On the issue of transparency and reproducibility in nanomedicine. Nature Nanotechnology, 14, 629-635. https://doi.org/10.1038/s41565-019-0496-9
Variability and bias in measurements of metals mass fractions in automobile shredder residue
Løvik, A. N., Figi, R., Schreiner, C., Rösslein, M., Widmer, R., Bunge, R., … Wäger, P. (2019). Variability and bias in measurements of metals mass fractions in automobile shredder residue. Recycling, 4(3), 34 (18 pp.). https://doi.org/10.3390/recycling4030034
Engineering the bioactivity of flame-made ceria and ceria/bioglass hybrid nanoparticles
Matter, M. T., Furer, L. A., Starsich, F. H. L., Fortunato, G., Pratsinis, S. E., & Herrmann, I. K. (2019). Engineering the bioactivity of flame-made ceria and ceria/bioglass hybrid nanoparticles. ACS Applied Materials and Interfaces, 11(3), 2830-2839. https://doi.org/10.1021/acsami.8b18778