Active Filters

  • (-) Organizational Unit = 501 Materials for Energy Conversion
  • (-) Publication Year = 2006 - 2019
  • (-) Empa Authors ≠ Rentsch, Daniel
  • (-) Empa Authors = Pokrant, Simone
Search Results 1 - 20 of 26
Select Page
Wavelength dependent loading of traps in the persistent phosphor SrAl<SUB>2</SUB>O<SUB>4</SUB>:Eu<SUP>2+</SUP>, Dy<SUP>3+</SUP>
Hagemann, H., Lovy, D., Yoon, S., Pokrant, S., Gartmann, N., Walfort, B., & Bierwagen, J. (2016). Wavelength dependent loading of traps in the persistent phosphor SrAl2O4:Eu2+, Dy3+. Journal of Luminescence, 170, 299-304. https://doi.org/10.1016/j.jlumin.2015.10.035
Controlled design of functional nano-coatings: reduction of loss mechanisms in photoelectrochemical water splitting
Landsmann, S., Surace, Y., Trottmann, M., Dilger, S., Weidenkaff, A., & Pokrant, S. (2016). Controlled design of functional nano-coatings: reduction of loss mechanisms in photoelectrochemical water splitting. ACS Applied Materials and Interfaces, 8(19), 12149-12157. https://doi.org/10.1021/acsami.6b01129
Morphology and mesopores in photoelectrochemically active LaTiO<SUB>2</SUB>N single crystals
Pokrant, S., Dilger, S., & Landsmann, S. (2016). Morphology and mesopores in photoelectrochemically active LaTiO2N single crystals. Journal of Materials Research, 31(11), 1574-1579. https://doi.org/10.1557/jmr.2016.9
Capacity fading in Li<SUB>3</SUB>MnO<SUB>4</SUB>: a post-mortem analysis
Surace, Y., Simões, M., Pokrant, S., & Weidenkaff, A. (2016). Capacity fading in Li3MnO4: a post-mortem analysis. Journal of Electroanalytical Chemistry, 766, 44-51. https://doi.org/10.1016/j.jelechem.2016.01.029
Design guidelines for high-performance particle-based photoanodes for water splitting: lanthanum titanium oxynitride as a model
Landsmann, S., Maegli, A. E., Trottmann, M., Battaglia, C., Weidenkaff, A., & Pokrant, S. (2015). Design guidelines for high-performance particle-based photoanodes for water splitting: lanthanum titanium oxynitride as a model. ChemSusChem, 8(20), 3451-3458. https://doi.org/10.1002/cssc.201500830
Hydrothermal vanadium manganese oxides: anode and cathode materials for lithium-ion batteries
Simões, M., Surace, Y., Yoon, S., Battaglia, C., Pokrant, S., & Weidenkaff, A. (2015). Hydrothermal vanadium manganese oxides: anode and cathode materials for lithium-ion batteries. Journal of Power Sources, 291, 66-74. https://doi.org/10.1016/j.jpowsour.2015.04.156
Activation of nano-Ca<small><sub>2</sub></small>MnO<small><sub>4</sub></small> for electrochemical lithium intercalation
Surace, Y., Simões, M., Karvonen, L., Battaglia, C., Pokrant, S., & Weidenkaff, A. (2015). Activation of nano-Ca2MnO4 for electrochemical lithium intercalation. In J. Augustynski, F. Grosse, D. Kumar, F. Sanchez, C. Santato, X. W. Sun, … T. Yamamoto (Eds.), Materials research society symposium proceedings: Vol. 1805. Symposium SS/TT – fabrication and properties of oxide thin films, nanostructures and interfaces for advanced applications (pp. mrss15-2133233 (6 pp.). https://doi.org/10.1557/opl.2015.742
Freeze drying synthesis of Li<SUB>3</SUB>MnO<SUB>4</SUB> cathode material for Li-ion batteries: A physico-electrochemical study
Surace, Y., Simões, M., Karvonen, L., Yoon, S., Pokrant, S., & Weidenkaff, A. (2015). Freeze drying synthesis of Li3MnO4 cathode material for Li-ion batteries: A physico-electrochemical study. Journal of Alloys and Compounds, 644, 297-303. https://doi.org/10.1016/j.jallcom.2015.04.221
The influence of boric acid on improved persistent luminescence and thermal oxidation resistance of SrAl<SUB>2</SUB>O<SUB>4</SUB>:Eu<SUP>2+</SUP>
Yoon, S., Bierwagen, J., Trottmann, M., Walfort, B., Gartmann, N., Weidenkaff, A., … Pokrant, S. (2015). The influence of boric acid on improved persistent luminescence and thermal oxidation resistance of SrAl2O4:Eu2+. Journal of Luminescence, 167, 126-131. https://doi.org/10.1016/j.jlumin.2015.06.021
Enhancement of photocatalytic water oxidation by the morphological control of LaTiO<sub>2</sub>N and cobalt oxide catalysts
Maegli, A. E., Pokrant, S., Hisatomi, T., Trottmann, M., Domen, K., & Weidenkaff, A. (2014). Enhancement of photocatalytic water oxidation by the morphological control of LaTiO2N and cobalt oxide catalysts. Journal of Physical Chemistry C, 118(30), 16344-16351. https://doi.org/10.1021/jp4084162
Mesoporosity in photocatalytically active oxynitride single crystals
Pokrant, S., Cheynet, M. C., Irsen, S., Maegli, A. E., & Erni, R. (2014). Mesoporosity in photocatalytically active oxynitride single crystals. Journal of Physical Chemistry C, 118(36), 20940-20947. https://doi.org/10.1021/jp506597h
Structure stability of Li<SUB><I>x</I></SUB>H<SUB><I>y</I></SUB>V<SUB>3</SUB>O<SUB>8</SUB> exposed to water-vapour
Simões, M., Karvonen, L., Maegli, A., Yoon, S., Pokrant, S., Weidenkaff, A., & Mettan, Y. (2014). Structure stability of LixHyV3O8 exposed to water-vapour. International Journal of Nanotechnology, 11(9-11), 932-945. https://doi.org/10.1504/IJNT.2014.063800
Surface-modified lithiated H<SUB>2</SUB>V<SUB>3</SUB>O<SUB>8</SUB>: a stable high energy density cathode material for lithium-ion batteries with LiPF<SUB>6</SUB> electrolytes
Simões, M., Mettan, Y., Pokrant, S., & Weidenkaff, A. (2014). Surface-modified lithiated H2V3O8: a stable high energy density cathode material for lithium-ion batteries with LiPF6 electrolytes. Journal of Physical Chemistry C, 118(26), 14169-14176. https://doi.org/10.1021/jp502546w
Functionalization of Ca<sub>2</sub>MnO<sub>4–&delta;</sub> by controlled calcium extraction: activation for electrochemical Li intercalation
Surace, Y., Simões, M., Eilertsen, J., Karvonen, L., Pokrant, S., & Weidenkaff, A. (2014). Functionalization of Ca2MnO4–δ by controlled calcium extraction: activation for electrochemical Li intercalation. Solid State Ionics, 266, 36-43. https://doi.org/10.1016/j.ssi.2014.08.005
Improved persistent luminescence of CaTiO<SUB>3</SUB>:Pr by fluorine substitution and thermochemical treatment
Yoon, S., Otal, E. H., Maegli, A. E., Karvonen, L., Matam, S. K., Ebbinghaus, S. G., … Weidenkaff, A. (2014). Improved persistent luminescence of CaTiO3:Pr by fluorine substitution and thermochemical treatment. Journal of Alloys and Compounds, 613, 338-343. https://doi.org/10.1016/j.jallcom.2014.06.041
Synthesis, Crystal Structure, Electric and Magnetic Properties of LaVO<SUB>2.78</SUB>N<SUB>0.10</SUB>
Yoon, S., Maegli, A. E., Karvonen, L., Shkabko, A., Populoh, S., Gałązka, K., … Weidenkaff, A. (2014). Synthesis, Crystal Structure, Electric and Magnetic Properties of LaVO2.78N0.10. Zeitschrift für Anorganische und Allgemeine Chemie, 640(5), 797-804. https://doi.org/10.1002/zaac.201300593
Attrition-enhanced nanocomposite synthesis of indium-filled, iron-substituted skutterudite antimonides for improved performance thermoelectrics
Eilertsen, J., Trottmann, M., Populoh, S., Berthelot, R., Cooke, C. M., Cinibulk, M. K., … Subramanian, M. A. (2013). Attrition-enhanced nanocomposite synthesis of indium-filled, iron-substituted skutterudite antimonides for improved performance thermoelectrics. In G. S. Nolas, Y. Grin, D. Johnson, & A. Thompson (Eds.), Materials research society symposium proceedings: Vol. 1490. Symposium B – thermoelectric materials research and device development for power conversion and refrigeration (pp. 27-32). https://doi.org/10.1557/opl.2013.287
Perovskite-related oxynitrides in photocatalysis
Pokrant, S., Maegli, A. E., Chiarello, G. L., & Weidenkaff, A. (2013). Perovskite-related oxynitrides in photocatalysis. Chimia, 67(3), 162-167. https://doi.org/10.2533/chimia.2013.162
Photocatalytic water splitting with modified LaTiO<small><SUB>2</SUB></small>N
Pokrant, S., Maegli, A., Trottmann, M., Sagarna, L., Otal, E., Hisatomi, T., … Weidenkaff, A. (2013). Photocatalytic water splitting with modified LaTiO2N (p. A0902 (9 pp.). Presented at the 4th European PEFC and H2 forum 2013. Lucerne, Switzerland.
Structure and thermoelectric properties of EuTi(O,N)<SUB>3 ± </SUB> <I><SUB>δ</SUB></I>
Sagarna, L., Rushchanskii, K. Z., Maegli, A., Yoon, S., Populoh, S., Shkabko, A., … Weidenkaff, A. (2013). Structure and thermoelectric properties of EuTi(O,N)3 ± δ. Journal of Applied Physics, 114(3), 033701 (10 pp.). https://doi.org/10.1063/1.4813098