Active Filters

  • (-) Organizational Unit = 501 Materials for Energy Conversion
  • (-) Publication Year = 2006 - 2019
  • (-) Keywords ≠ energy storage
  • (-) Full Text = Open Access
Search Results 1 - 20 of 147

Pages

  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Scaling up electrodes for photoelectrochemical water splitting: fabrication process and performance of 40 cm<sup>2</sup> LaTiO<sub>2</sub>N photoanodes
Dilger, S., Trottmann, M., & Pokrant, S. (2019). Scaling up electrodes for photoelectrochemical water splitting: fabrication process and performance of 40 cm2 LaTiO2N photoanodes. ChemSusChem, 12(9), 1931-1938. https://doi.org/10.1002/cssc.201802645
Ionic conduction mechanism in the Na&lt;sub&gt;2&lt;/sub&gt;(B&lt;sub&gt;12&lt;/sub&gt;H&lt;sub&gt;12&lt;/sub&gt;)&lt;sub&gt;0.5&lt;/sub&gt;(B&lt;sub&gt;10&lt;/sub&gt;H&lt;sub&gt;10&lt;/sub&gt;)&lt;sub&gt;0.5 &lt;/sub&gt;&lt;em&gt;closo&lt;/em&gt;-borate
Duchêne, L., Lunghammer, S., Burankova, T., Liao, W. C., Embs, J. P., Copéret, C., … Battaglia, C. (2019). Ionic conduction mechanism in the Na2(B12H12)0.5(B10H10)0.5 closo-borate solid-state electrolyte: interplay of disorder and ion–ion interactions. Chemistry of Materials, 31(9), 3449-3460. https://doi.org/10.1021/acs.chemmater.9b00610
I&lt;sub&gt;2 &lt;/sub&gt;vapor-induced degradation of formamidinium lead iodide based perovskite solar cells under heat–light soaking conditions
Fu, F., Pisoni, S., Jeangros, Q., Sastre-Pellicer, J., Kawecki, M., Paracchino, A., … Buecheler, S. (2019). I2 vapor-induced degradation of formamidinium lead iodide based perovskite solar cells under heat–light soaking conditions. Energy and Environmental Science, 12(10), 3074-3088. https://doi.org/10.1039/C9EE02043H
Physical vapour deposition of cyanine salts and their first application in organic electronic devices
Gesevičius, D., Neels, A., Duchêne, L., Hack, E., Heier, J., & Nüesch, F. (2019). Physical vapour deposition of cyanine salts and their first application in organic electronic devices. Journal of Materials Chemistry C, 7(2), 414-423. https://doi.org/10.1039/C8TC05286G
Sn-decorated Cu for selective electrochemical CO&lt;sub&gt;2&lt;/sub&gt; to CO conversion: precision architecture beyond composition design
Ju, W., Zeng, J., Bejtka, K., Ma, H., Rentsch, D., Castellino, M., … Battaglia, C. (2019). Sn-decorated Cu for selective electrochemical CO2 to CO conversion: precision architecture beyond composition design. ACS Applied Energy Materials, 2(1), 867-872. https://doi.org/10.1021/acsaem.8b01944
Ethanolamine-assisted low-temperature crystallization of hydroxide nanoparticle ink into transparent and conductive ITO layers
Liu, Y., Moser, T., Andres, C., Gorjan, L., Remhof, A., Clemens, F., … Romanyuk, Y. E. (2019). Ethanolamine-assisted low-temperature crystallization of hydroxide nanoparticle ink into transparent and conductive ITO layers. Journal of Materials Chemistry A, 7(7), 3083-3089. https://doi.org/10.1039/C8TA09891C
Pressure-induced phase transitions in Na&lt;sub&gt;2&lt;/sub&gt;B&lt;sub&gt;12&lt;/sub&gt;H&lt;sub&gt;12&lt;/sub&gt;, structural investigation on a candidate for solid-state electrolyte
Moury, R., Łodziana, Z., Remhof, A., Duchêne, L., Roedern, E., Gigante, A., & Hagemann, H. (2019). Pressure-induced phase transitions in Na2B12H12, structural investigation on a candidate for solid-state electrolyte. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 75(3), 406-413. https://doi.org/10.1107/S2052520619004670
Separators and electrolytes for rechargeable batteries: fundamentals and perspectives
Nestler, T., Roedern, E., Uvarov, N. F., Hanzig, J., Elia, G. A., & de Vivanco, M. (2019). Separators and electrolytes for rechargeable batteries: fundamentals and perspectives. Physical Sciences Reviews, 4(4), 20170115 (29 pp.). https://doi.org/10.1515/psr-2017-0115
Pathways to electrochemical solar-hydrogen technologies
Ardo, S., Fernandez Rivas, D., Modestino, M. A., Schulze Greiving, V., Abdi, F. F., Alarcon Llado, E., … Westerik, P. (2018). Pathways to electrochemical solar-hydrogen technologies. Energy and Environmental Science, 11(10), 2768-2783. https://doi.org/10.1039/C7EE03639F
Dynamics of the coordination complexes in a solid-state Mg electrolyte
Burankova, T., Roedern, E., Maniadaki, A. E., Hagemann, H., Rentsch, D., Łodziana, Z., … Embs, J. P. (2018). Dynamics of the coordination complexes in a solid-state Mg electrolyte. Journal of Physical Chemistry Letters, 9(22), 6450-6455. https://doi.org/10.1021/acs.jpclett.8b02965
Evolution of water diffusion in a sorption-enhanced methanation catalyst
Delmelle, R., Terreni, J., Remhof, A., Heel, A., Proost, J., & Borgschulte, A. (2018). Evolution of water diffusion in a sorption-enhanced methanation catalyst. Catalysts, 8(9), 341 (15 pp.). https://doi.org/10.3390/catal8090341
Determination and optimization of material parameters of particle-based LaTiO<small><sub>2</sub></small>N photoelectrodes
Gaudy, Y. K., Dilger, S., Landsmann, S., Aschauer, U., Pokrant, S., & Haussener, S. (2018). Determination and optimization of material parameters of particle-based LaTiO2N photoelectrodes. Journal of Materials Chemistry A, 6(36), 17337-17352. https://doi.org/10.1039/c8ta03649g
Unexpected effects of thickness and strain on superconductivity and magnetism in optimally doped La<sub><small>1.84</small></sub>Sr<sub><small>0.16</small></sub>CuO<sub><small>4</small></sub> thin films
Howald, L., Stilp, E., Baiutti, F., Dietl, C., Wrobel, F., Logvenov, G., … Suter, A. (2018). Unexpected effects of thickness and strain on superconductivity and magnetism in optimally doped La1.84Sr0.16CuO4 thin films. Physical Review B, 97(9), 094514 (13 pp.). https://doi.org/10.1103/PhysRevB.97.094514
Synthesis of novel cyclosiloxane monomers containing push–pull moieties and their anionic ring opening polymerization
Perju, E., Cuervo-Reyes, E., Shova, S., & Opris, D. M. (2018). Synthesis of novel cyclosiloxane monomers containing push–pull moieties and their anionic ring opening polymerization. RSC Advances, 8(14), 7569-7578. https://doi.org/10.1039/C8RA00707A
Effect of gallium substitution on lithium-ion conductivity and phase evolution in sputtered Li<sub>7-3x</sub>Ga <sub>x</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> thin films
Rawlence, M., Filippin, A. N., Wäckerlin, A., Lin, T. Y., Cuervo-Reyes, E., Remhof, A., … Buecheler, S. (2018). Effect of gallium substitution on lithium-ion conductivity and phase evolution in sputtered Li7-3xGa xLa3Zr2O12 thin films. ACS Applied Materials and Interfaces, 10(16), 13720-13728. https://doi.org/10.1021/acsami.8b03163
Enhanced moments of Eu in single crystals of the metallic helical antiferromagnet EuCo<sub>2</sub>_<sub>y</sub>As<sub>2</sub>
Sangeetha, N. S., Anand, V. K., Cuervo-Reyes, E., Smetana, V., Mudring, A. V., & Johnston, D. C. (2018). Enhanced moments of Eu in single crystals of the metallic helical antiferromagnet EuCo2_yAs2. Physical Review B, 97(14), 144403 (27 pp.). https://doi.org/10.1103/PhysRevB.97.144403
Superconductivity drives magnetism in δ-doped La<sub>2</sub>CuO<sub>4</sub>
Suter, A., Logvenov, G., Boris, A. V., Baiutti, F., Wrobel, F., Howald, L., … Keimer, B. (2018). Superconductivity drives magnetism in δ-doped La2CuO4. Physical Review B, 97(13), 134522 (11 pp.). https://doi.org/10.1103/PhysRevB.97.134522
One-dimensional organic–inorganic hybrid perovskite incorporating near-infrared-absorbing cyanine cations
Véron, A. C., Linden, A., Leclaire, N. A., Roedern, E., Hu, S., Ren, W., … Nüesch, F. A. (2018). One-dimensional organic–inorganic hybrid perovskite incorporating near-infrared-absorbing cyanine cations. Journal of Physical Chemistry Letters, 9(9), 2438-2442. https://doi.org/10.1021/acs.jpclett.8b00458
Valleytronics in thermoelectric materials
Xin, J., Tang, Y., Liu, Y., Zhao, X., Pan, H., & Zhu, T. (2018). Valleytronics in thermoelectric materials. npj Quantum Materials, 3, 9 (10 pp.). https://doi.org/10.1038/s41535-018-0083-6
Direct rehydrogenation of LiBH<SUB>4</SUB> from H-deficient Li<SUB>2</SUB>B<SUB>12</SUB>H<SUB>12-x</SUB>
Yan, Y., Wang, H., Zhu, M., Cai, W., Rentsch, D., & Remhof, A. (2018). Direct rehydrogenation of LiBH4 from H-deficient Li2B12H12-x. Crystals, 8(3), 131 (7 pp.). https://doi.org/10.3390/cryst8030131
 

Pages