Active Filters

  • (-) Organizational Unit = 501 Materials for Energy Conversion
  • (-) Publication Year = 2006 - 2019
  • (-) Keywords ≠ energy storage
  • (-) Empa Authors = Battaglia, Corsin
Search Results 1 - 20 of 39
Select Page
Electrochemical oxidative stability of hydroborate-based solid-state electrolytes
Asakura, R., Duchêne, L., Kühnel, R. S., Remhof, A., Hagemann, H., & Battaglia, C. (2019). Electrochemical oxidative stability of hydroborate-based solid-state electrolytes. ACS Applied Energy Materials, 2(9), 6924-6930. https://doi.org/10.1021/acsaem.9b01487
Impact of liquid phase formation on microstructure and conductivity of Li-stabilized Na-<em>β</em>"-alumina ceramics
Bay, M. C., Heinz, M. V. F., Figi, R., Schreiner, C., Basso, D., Zanon, N., … Battaglia, C. (2019). Impact of liquid phase formation on microstructure and conductivity of Li-stabilized Na-β"-alumina ceramics. ACS Applied Energy Materials, 2(1), 687-693. https://doi.org/10.1021/acsaem.8b01715
Water-in-salt electrolytes for aqueous lithium-ion batteries with liquidus temperatures below -10 °C
Becker, M., Kühnel, R. S., & Battaglia, C. (2019). Water-in-salt electrolytes for aqueous lithium-ion batteries with liquidus temperatures below -10 °C. Chemical Communications, 55(80), 12032-12035. https://doi.org/10.1039/C9CC04495G
Analytical approximation for the frequency dependent conductivity in ionic conductors
Cuervo-Reyes, E., Roedern, E., Yun, Y., & Battaglia, C. (2019). Analytical approximation for the frequency dependent conductivity in ionic conductors. Electrochimica Acta, 297, 435-442. https://doi.org/10.1016/j.electacta.2018.11.082
Ionic conduction mechanism in the Na<sub>2</sub>(B<sub>12</sub>H<sub>12</sub>)<sub>0.5</sub>(B<sub>10</sub>H<sub>10</sub>)<sub>0.5 </sub><em>closo</em>-borate
Duchêne, L., Lunghammer, S., Burankova, T., Liao, W. C., Embs, J. P., Copéret, C., … Battaglia, C. (2019). Ionic conduction mechanism in the Na2(B12H12)0.5(B10H10)0.5 closo-borate solid-state electrolyte: interplay of disorder and ion–ion interactions. Chemistry of Materials, 31(9), 3449-3460. https://doi.org/10.1021/acs.chemmater.9b00610
Electrocatalytic reduction of gaseous CO<sub>2 </sub>to CO on Sn/Cu‐nanofiber‐based gas diffusion electrodes
Ju, W., Jiang, F., Ma, H., Pan, Z., Zhao, Y. ‐B., Pagani, F., … Battaglia, C. (2019). Electrocatalytic reduction of gaseous CO2 to CO on Sn/Cu‐nanofiber‐based gas diffusion electrodes. Advanced Energy Materials, 9(32), 1901514 (6 pp.). https://doi.org/10.1002/aenm.201901514
Sn-decorated Cu for selective electrochemical CO<sub>2</sub> to CO conversion: precision architecture beyond composition design
Ju, W., Zeng, J., Bejtka, K., Ma, H., Rentsch, D., Castellino, M., … Battaglia, C. (2019). Sn-decorated Cu for selective electrochemical CO2 to CO conversion: precision architecture beyond composition design. ACS Applied Energy Materials, 2(1), 867-872. https://doi.org/10.1021/acsaem.8b01944
Sn/Cu catalysts for CO<sub>2</sub>RR: impact of composition and morphology on product selectivity
Ju, W., & Battaglia, C. (2019). Sn/Cu catalysts for CO2RR: impact of composition and morphology on product selectivity (p. (9 pp.). Presented at the European fuel cell forum (EFCF 2019). Lucerne, Switzerland.
Fabrication, characterization, and application-matched design of thermoelectric modules based on Half-Heusler FeNbSb and TiNiSn
Landmann, D., Tang, Y., Kunz, B., Huber, R., Widner, D., Rickhaus, P., … Battaglia, C. (2019). Fabrication, characterization, and application-matched design of thermoelectric modules based on Half-Heusler FeNbSb and TiNiSn. Journal of Applied Physics, 126(8), 085113 (5 pp.). https://doi.org/10.1063/1.5108636
Stability of aqueous electrolytes based on LiFSI and NaFSI
Reber, D., Figi, R., Kühnel, R. S., & Battaglia, C. (2019). Stability of aqueous electrolytes based on LiFSI and NaFSI. Electrochimica Acta, 321, 134644 (6 pp.). https://doi.org/10.1016/j.electacta.2019.134644
Suppressing crystallization of water-in-salt electrolytes by asymmetric anions enables low-temperature operation of high-voltage aqueous batteries
Reber, D., Kühnel, R. S., & Battaglia, C. (2019). Suppressing crystallization of water-in-salt electrolytes by asymmetric anions enables low-temperature operation of high-voltage aqueous batteries. ACS Materials Letters, 1(1), 44-51. https://doi.org/10.1021/acsmaterialslett.9b00043
Stabilizing capacity retention in NMC811/graphite full cells via TMSPi electrolyte additives
Vidal Laveda, J., Low, J. E., Pagani, F., Stilp, E., Dilger, S., Baran, V., … Battaglia, C. (2019). Stabilizing capacity retention in NMC811/graphite full cells via TMSPi electrolyte additives. ACS Applied Energy Materials, 2(10), 7036-7044. https://doi.org/10.1021/acsaem.9b00727
Pathways to electrochemical solar-hydrogen technologies
Ardo, S., Fernandez Rivas, D., Modestino, M. A., Schulze Greiving, V., Abdi, F. F., Alarcon Llado, E., … Westerik, P. (2018). Pathways to electrochemical solar-hydrogen technologies. Energy and Environmental Science, 11(10), 2768-2783. https://doi.org/10.1039/C7EE03639F
Dynamics of the coordination complexes in a solid-state Mg electrolyte
Burankova, T., Roedern, E., Maniadaki, A. E., Hagemann, H., Rentsch, D., Łodziana, Z., … Embs, J. P. (2018). Dynamics of the coordination complexes in a solid-state Mg electrolyte. Journal of Physical Chemistry Letters, 9(22), 6450-6455. https://doi.org/10.1021/acs.jpclett.8b02965
Lab-scale alkaline water electrolyzer for bridging material fundamentals with realistic operation
Ju, W., Heinz, M. V. F., Pusterla, L., Hofer, M., Fumey, B., Castiglioni, R., … Vogt, U. F. (2018). Lab-scale alkaline water electrolyzer for bridging material fundamentals with realistic operation. ACS Sustainable Chemistry and Engineering, 6(4), 4829-4837. https://doi.org/10.1021/acssuschemeng.7b04173
Epitaxial thin films as a model system for Li-Ion conductivity in Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>
Pagani, F., Stilp, E., Pfenninger, R., Reyes, E. C., Remhof, A., Balogh-Michels, Z., … Battaglia, C. (2018). Epitaxial thin films as a model system for Li-Ion conductivity in Li4Ti5O12. ACS Applied Materials and Interfaces, 10(51), 44494-44500. https://doi.org/10.1021/acsami.8b16519
Effect of gallium substitution on lithium-ion conductivity and phase evolution in sputtered Li<sub>7-3x</sub>Ga <sub>x</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> thin films
Rawlence, M., Filippin, A. N., Wäckerlin, A., Lin, T. Y., Cuervo-Reyes, E., Remhof, A., … Buecheler, S. (2018). Effect of gallium substitution on lithium-ion conductivity and phase evolution in sputtered Li7-3xGa xLa3Zr2O12 thin films. ACS Applied Materials and Interfaces, 10(16), 13720-13728. https://doi.org/10.1021/acsami.8b03163
Impact of Ni content on the thermoelectric properties of half-Heusler TiNiSn
Tang, Y., Li, X., Martin, L. H. J., Cuervo Reyes, E., Ivas, T., Leinenbach, C., … Battaglia, C. (2018). Impact of Ni content on the thermoelectric properties of half-Heusler TiNiSn. Energy and Environmental Science, 11(2), 311-320. https://doi.org/10.1039/C7EE03062B
Manufacturing macroporous monoliths of microporous metal-organic frameworks
Widmer, R. N., Lampronti, G. I., Kunz, B., Battaglia, C., Shepherd, J. H., Redfern, S. A. T., & Bennett, T. D. (2018). Manufacturing macroporous monoliths of microporous metal-organic frameworks. ACS Applied Nano Materials, 1(2), 497-500. https://doi.org/10.1021/acsanm.7b00335
Advanced Cu-Sn foam for selectively converting CO<sub>2</sub> to CO in aqueous solution
Zeng, J., Bejtka, K., Ju, W., Castellino, M., Chiodoni, A., Sacco, A., … Pirri, C. F. (2018). Advanced Cu-Sn foam for selectively converting CO2 to CO in aqueous solution. Applied Catalysis B: Environmental, 236, 475-482. https://doi.org/10.1016/j.apcatb.2018.05.056