Active Filters

  • (-) Empa Laboratories = 501 Materials for Energy Conversion
  • (-) Publication Year = 2006 - 2019
  • (-) Publication Type = Proceedings Paper
  • (-) Empa Authors = Trottmann, Matthias
Search Results 1 - 8 of 8
  • RSS Feed
Select Page
Attrition-enhanced nanocomposite synthesis of indium-filled, iron-substituted skutterudite antimonides for improved performance thermoelectrics
Eilertsen, J., Trottmann, M., Populoh, S., Berthelot, R., Cooke, C. M., Cinibulk, M. K., … Subramanian, M. A. (2013). Attrition-enhanced nanocomposite synthesis of indium-filled, iron-substituted skutterudite antimonides for improved performance thermoelectrics. In G. S. Nolas, Y. Grin, D. Johnson, & A. Thompson (Eds.), Materials research society symposium proceedings: Vol. 1490. Symposium B – thermoelectric materials research and device development for power conversion and refrigeration (pp. 27-32). https://doi.org/10.1557/opl.2013.287
Photocatalytic water splitting with modified LaTiO<small><SUB>2</SUB></small>N
Pokrant, S., Maegli, A., Trottmann, M., Sagarna, L., Otal, E., Hisatomi, T., … Weidenkaff, A. (2013). Photocatalytic water splitting with modified LaTiO2N (p. A0902 (9 pp.). Presented at the 4th European PEFC and H2 forum 2013. .
Synthesis andcharacterization of La (Ti,Nb)(O,N)<SUB>3</SUB> for photocatalytic water oxidation
Yoon, S., Maegli, A. E., Eyssler, A., Trottmann, M., Hisatomi, T., Leroy, C. M., … Weidenkaff, A. (2012). Synthesis andcharacterization of La (Ti,Nb)(O,N)3 for photocatalytic water oxidation. In M. Grätzel (Ed.), Energy procedia: Vol. 22. EMRS symposium T: materials for solar hydrogen via photo-electrochemical production (pp. 41-47). https://doi.org/10.1016/j.egypro.2012.05.225
Demonstration of high temperature thermoelectric waste heat recovery from exhaust gases of a combustion engine
Trottmann, M., Weidenkaff, A., Populoh, S., Brunko, O., Veziridis, A., Bach, C., & Cabalzar, U. (2011). Demonstration of high temperature thermoelectric waste heat recovery from exhaust gases of a combustion engine. In D. Jänsch (Ed.), Thermoelectrics goes automotive II (pp. 92-99). expert verlag.
Aluminium-substituted zinc oxide for thermoelectric energy conversion
Schaeuble, N., Aguirre, M. H., Robert, R., Trottmann, M., Haemmerli, A., Bocher, L., … Weidenkaff, A. (2008). Aluminium-substituted zinc oxide for thermoelectric energy conversion. In ECT 2008 – On line proceedings (p. (5 pp.).
Direct conversion of simulated solar radiation into electrical energy by a perovskite thermoelectric oxide module (TOM)
Tomeš, P., Robert, R., Bocher, L., Trottmann, M., Aguirre, M. H., Weidenkaff, A., … Hejtmánek, J. (2008). Direct conversion of simulated solar radiation into electrical energy by a perovskite thermoelectric oxide module (TOM). In Materials science & technology conference and exhibition (MS&T'08) (pp. 429-435). Materials Science and Technology (MS&T).
Perovskite-type thermoelectric oxides and oxynitrides
Weidenkaff, A., Robert, R., Bocher, L., Tomes, P., Trottmann, M., & Aguirre, M. H. (2008). Perovskite-type thermoelectric oxides and oxynitrides. In ECT 2008 – On line proceedings (p. (4 pp.).
The development of thermoelectric oxides with perovskite-type structures for alternative energy technologies
Weidenkaff, A., Aguirre, M., Bocher, L., Trottmann, M., & Robert, R. (2008). The development of thermoelectric oxides with perovskite-type structures for alternative energy technologies. In C. Randall, H. T. Lin, K. Koumoto, & P. Clem (Eds.), Ceramic engineering and science proceedings: Vol. 28. Advances in electronic ceramics: a collection of papers presented at the 31st international conference on advanced ceramics and composites (pp. 501-509). The American Ceramic Society.