Active Filters

  • (-) Organizational Unit = 501 Materials for Energy Conversion
  • (-) Publication Year = 2019 - 2019
Search Results 1 - 16 of 16
  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Electrochemical oxidative stability of hydroborate-based solid-state electrolytes
Asakura, R., Duchêne, L., Kühnel, R. S., Remhof, A., Hagemann, H., & Battaglia, C. (2019). Electrochemical oxidative stability of hydroborate-based solid-state electrolytes. ACS Applied Energy Materials. https://doi.org/10.1021/acsaem.9b01487
Impact of liquid phase formation on microstructure and conductivity of Li-stabilized Na-<em>β</em>"-alumina ceramics
Bay, M. C., Heinz, M. V. F., Figi, R., Schreiner, C., Basso, D., Zanon, N., … Battaglia, C. (2019). Impact of liquid phase formation on microstructure and conductivity of Li-stabilized Na-β"-alumina ceramics. ACS Applied Energy Materials, 2(1), 687-693. https://doi.org/10.1021/acsaem.8b01715
Analytical approximation for the frequency dependent conductivity in ionic conductors
Cuervo-Reyes, E., Roedern, E., Yun, Y., & Battaglia, C. (2019). Analytical approximation for the frequency dependent conductivity in ionic conductors. Electrochimica Acta, 297, 435-442. https://doi.org/10.1016/j.electacta.2018.11.082
Spectroscopic properties of Dy<sup>3+</sup> - and Dy<sup>3+</sup> , B<sup>3+</sup> - doped SrAl<sub>2</sub>O<sub>4</sub>
Delgado, T., Ajoubipour, S., Afshani, J., Yoon, S., Walfort, B., & Hagemann, H. (2019). Spectroscopic properties of Dy3+ - and Dy3+ , B3+ - doped SrAl2O4. Optical Materials, 89, 268-275. https://doi.org/10.1016/j.optmat.2019.01.013
Scaling up electrodes for photoelectrochemical water splitting: fabrication process and performance of 40 cm<sup>2</sup> LaTiO<sub>2</sub>N photoanodes
Dilger, S., Trottmann, M., & Pokrant, S. (2019). Scaling up electrodes for photoelectrochemical water splitting: fabrication process and performance of 40 cm2 LaTiO2N photoanodes. ChemSusChem, 12(9), 1931-1938. https://doi.org/10.1002/cssc.201802645
Ionic conduction mechanism in the Na&lt;sub&gt;2&lt;/sub&gt;(B&lt;sub&gt;12&lt;/sub&gt;H&lt;sub&gt;12&lt;/sub&gt;)&lt;sub&gt;0.5&lt;/sub&gt;(B&lt;sub&gt;10&lt;/sub&gt;H&lt;sub&gt;10&lt;/sub&gt;)&lt;sub&gt;0.5 &lt;/sub&gt;&lt;em&gt;closo&lt;/em&gt;-borate
Duchêne, L., Lunghammer, S., Burankova, T., Liao, W. C., Embs, J. P., Copéret, C., … Battaglia, C. (2019). Ionic conduction mechanism in the Na2(B12H12)0.5(B10H10)0.5 closo-borate solid-state electrolyte: interplay of disorder and ion–ion interactions. Chemistry of Materials, 31(9), 3449-3460. https://doi.org/10.1021/acs.chemmater.9b00610
Physical vapour deposition of cyanine salts and their first application in organic electronic devices
Gesevičius, D., Neels, A., Duchêne, L., Hack, E., Heier, J., & Nüesch, F. (2019). Physical vapour deposition of cyanine salts and their first application in organic electronic devices. Journal of Materials Chemistry C, 7(2), 414-423. https://doi.org/10.1039/C8TC05286G
Direct solution‐based synthesis of the Na&lt;sub&gt;4&lt;/sub&gt;(B&lt;sub&gt;12&lt;/sub&gt;H&lt;sub&gt;12&lt;/sub&gt;)(B&lt;sub&gt;10&lt;/sub&gt;H&lt;sub&gt;10&lt;/sub&gt;) solid electrolyte
Gigante, A., Duchêne, L., Moury, R., Pupier, M., Remhof, A., & Hagemann, H. (2019). Direct solution‐based synthesis of the Na4(B12H12)(B10H10) solid electrolyte. ChemSusChem. https://doi.org/10.1002/cssc.201902152
The effect of activation time on water sorption behavior of nitrogen-doped, physically activated, monolithic carbon for adsorption cooling
Huber, L., Hauser, S. B., Brendlé, E., Ruch, P., Ammann, J., Hauert, R., … Koebel, M. M. (2019). The effect of activation time on water sorption behavior of nitrogen-doped, physically activated, monolithic carbon for adsorption cooling. Microporous and Mesoporous Materials, 276, 239-250. https://doi.org/10.1016/j.micromeso.2018.09.025
Electrocatalytic reduction of gaseous CO&lt;sub&gt;2 &lt;/sub&gt;to CO on Sn/Cu‐nanofiber‐based gas diffusion electrodes
Ju, W., Jiang, F., Ma, H., Pan, Z., Zhao, Y. ‐B., Pagani, F., … Battaglia, C. (2019). Electrocatalytic reduction of gaseous CO2 to CO on Sn/Cu‐nanofiber‐based gas diffusion electrodes. Advanced Energy Materials, 9(32), 1901514 (6 pp.). https://doi.org/10.1002/aenm.201901514
Sn-decorated Cu for selective electrochemical CO&lt;sub&gt;2&lt;/sub&gt; to CO conversion: precision architecture beyond composition design
Ju, W., Zeng, J., Bejtka, K., Ma, H., Rentsch, D., Castellino, M., … Battaglia, C. (2019). Sn-decorated Cu for selective electrochemical CO2 to CO conversion: precision architecture beyond composition design. ACS Applied Energy Materials, 2(1), 867-872. https://doi.org/10.1021/acsaem.8b01944
Sn/Cu catalysts for CO&lt;sub&gt;2&lt;/sub&gt;RR: impact of composition and morphology on product selectivity
Ju, W., & Battaglia, C. (2019). Sn/Cu catalysts for CO2RR: impact of composition and morphology on product selectivity (p. (9 pp.). Presented at the European fuel cell forum (EFCF 2019). Lucerne, Switzerland.
Fabrication, characterization, and application-matched design of thermoelectric modules based on Half-Heusler FeNbSb and TiNiSn
Landmann, D., Tang, Y., Kunz, B., Huber, R., Widner, D., Rickhaus, P., … Battaglia, C. (2019). Fabrication, characterization, and application-matched design of thermoelectric modules based on Half-Heusler FeNbSb and TiNiSn. Journal of Applied Physics, 126(8), 085113 (5 pp.). https://doi.org/10.1063/1.5108636
Ethanolamine-assisted low-temperature crystallization of hydroxide nanoparticle ink into transparent and conductive ITO layers
Liu, Y., Moser, T., Andres, C., Gorjan, L., Remhof, A., Clemens, F., … Romanyuk, Y. E. (2019). Ethanolamine-assisted low-temperature crystallization of hydroxide nanoparticle ink into transparent and conductive ITO layers. Journal of Materials Chemistry A, 7(7), 3083-3089. https://doi.org/10.1039/C8TA09891C
Pressure-induced phase transitions in Na&lt;sub&gt;2&lt;/sub&gt;B&lt;sub&gt;12&lt;/sub&gt;H&lt;sub&gt;12&lt;/sub&gt;, structural investigation on a candidate for solid-state electrolyte
Moury, R., Łodziana, Z., Remhof, A., Duchêne, L., Roedern, E., Gigante, A., & Hagemann, H. (2019). Pressure-induced phase transitions in Na2B12H12, structural investigation on a candidate for solid-state electrolyte. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 75(3), 406-413. https://doi.org/10.1107/S2052520619004670
Stability of aqueous electrolytes based on LiFSI and NaFSI
Reber, D., Figi, R., Kühnel, R. S., & Battaglia, C. (2019). Stability of aqueous electrolytes based on LiFSI and NaFSI. Electrochimica Acta, 321, 134644 (6 pp.). https://doi.org/10.1016/j.electacta.2019.134644