Active Filters

  • (-) Empa Laboratories = 501 Materials for Energy Conversion
  • (-) Publication Year = 2020
  • (-) Keywords ≠ hydroborates
Search Results 1 - 20 of 23
Select Page
4 V room-temperature all-solid-state sodium battery enabled by a passivating cathode/hydroborate solid electrolyte interface
Asakura, R., Reber, D., Duchêne, L., Payandeh, S., Remhof, A., Hagemann, H., & Battaglia, C. (2020). 4 V room-temperature all-solid-state sodium battery enabled by a passivating cathode/hydroborate solid electrolyte interface. Energy and Environmental Science, 13(12), 5048-5058. https://doi.org/10.1039/D0EE01569E
Impact of sintering conditions and zirconia addition on flexural strength and ion conductivity of Na-β"-alumina ceramics
Bay, M. C., Heinz, M. V. F., Linte, C., German, A., Blugan, G., Battaglia, C., & Vogt, U. F. (2020). Impact of sintering conditions and zirconia addition on flexural strength and ion conductivity of Na-β"-alumina ceramics. Materials Today Communications, 23, 101118 (7 pp.). https://doi.org/10.1016/j.mtcomm.2020.101118
Sodium plating from Na‐<em>β</em>"‐alumina ceramics at room temperature, paving the way for fast‐charging all‐solid‐state batteries
Bay, M. ‐C., Wang, M., Grissa, R., Heinz, M. V. F., Sakamoto, J., & Battaglia, C. (2020). Sodium plating from Na‐β"‐alumina ceramics at room temperature, paving the way for fast‐charging all‐solid‐state batteries. Advanced Energy Materials, 10(3), 1902899 (8 pp.). https://doi.org/10.1002/aenm.201902899
Crystallization of <em>closo</em>-borate electrolytes from solution enabling infiltration into slurry-casted porous electrodes for all-solid-state batteries
Duchêne, L., Kim, D. H., Song, Y. B., Jun, S., Moury, R., Remhof, A., … Battaglia, C. (2020). Crystallization of closo-borate electrolytes from solution enabling infiltration into slurry-casted porous electrodes for all-solid-state batteries. Energy Storage Materials, 26, 543-549. https://doi.org/10.1016/j.ensm.2019.11.027
Polymer-inorganic nanocomposite coating with high ionic conductivity and transference number for a stable lithium metal anode
Fu, C., & Battaglia, C. (2020). Polymer-inorganic nanocomposite coating with high ionic conductivity and transference number for a stable lithium metal anode. ACS Applied Materials and Interfaces, 12(37), 41620-41626. https://doi.org/10.1021/acsami.0c13485
Tailoring thermoelectric properties of Zr<sub>0.43</sub>Hf<sub>0.57</sub>NiSn half-Heusler compound by defect engineering
Gałązka, K., Xie, W., Populoh, S., Aguirre, M. H., Yoon, S., Büttner, G., & Weidenkaff, A. (2020). Tailoring thermoelectric properties of Zr0.43Hf0.57NiSn half-Heusler compound by defect engineering. Rare Metals, 39, 659-670. https://doi.org/10.1007/s12598-020-01392-7
A review of the MSCA ITN ECOSTORE - novel complex metal hydrides for efficient and compact storage of renewable energy as hydrogen and electricity
Hadjixenophontos, E., Dematteis, E. M., Berti, N., Wołczyk, A. R., Huen, P., Brighi, M., … Heere, M. (2020). A review of the MSCA ITN ECOSTORE - novel complex metal hydrides for efficient and compact storage of renewable energy as hydrogen and electricity. Inorganics, 8(3), 17 (71 pp.). https://doi.org/10.3390/inorganics8030017
BaTiO&lt;sub&gt;3&lt;/sub&gt; nanotubes by co-axial electrospinning: rheological and microstructural investigations
Hedayati, M., Taheri-Nassaj, E., Yourdkhani, A., Borlaf, M., Zhang, J., Calame, M., … Clemens, F. J. (2020). BaTiO3 nanotubes by co-axial electrospinning: rheological and microstructural investigations. Journal of the European Ceramic Society, 40(4), 1269-1279. https://doi.org/10.1016/j.jeurceramsoc.2019.11.078
Dynamics of porous and amorphous magnesium borohydride to understand solid state Mg-ion-conductors
Heere, M., Hansen, A. L., Payandeh, S. H., Aslan, N., Gizer, G., Sørby, M. H., … Lohstroh, W. (2020). Dynamics of porous and amorphous magnesium borohydride to understand solid state Mg-ion-conductors. Scientific Reports, 10(1), 9080 (11 pp.). https://doi.org/10.1038/s41598-020-65857-6
Pressure management and cell design in solid-electrolyte batteries, at the example of a sodium-nickel chloride battery
Heinz, M. V. F., Graeber, G., Landmann, D., & Battaglia, C. (2020). Pressure management and cell design in solid-electrolyte batteries, at the example of a sodium-nickel chloride battery. Journal of Power Sources, 465, 228268 (7 pp.). https://doi.org/10.1016/j.jpowsour.2020.228268
Conformal Cu coating on electrospun nanofibers for 3D electro‐conductive networks
Jiang, F., Ju, W., Pan, Z., Lin, L., Yue, Y., Zhao, Y. ‐B., … Wang, J. (2020). Conformal Cu coating on electrospun nanofibers for 3D electro‐conductive networks. Advanced Electronic Materials, 6(2), 1900767 (11 pp.). https://doi.org/10.1002/aelm.201900767
Perspective-electrochemical stability of water-in-salt electrolytes
Kühnel, R. S., Reber, D., & Battaglia, C. (2020). Perspective-electrochemical stability of water-in-salt electrolytes. Journal of the Electrochemical Society, 167(7), 070544 (4 pp.). https://doi.org/10.1149/1945-7111/ab7c6f
Sodium plating and stripping from Na-β&quot;-alumina ceramics beyond 1000 mA/cm&lt;sup&gt;2&lt;/sup&gt;
Landmann, D., Graeber, G., Heinz, M. V. F., Haussener, S., & Battaglia, C. (2020). Sodium plating and stripping from Na-β"-alumina ceramics beyond 1000 mA/cm2. Materials Today Energy, 18, 100515 (8 pp.). https://doi.org/10.1016/j.mtener.2020.100515
Large planar Na-β&quot;-Al&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt; solid electrolytes for next generation Na-Batteries
Ligon, S. C., Bay, M. ‐C., Heinz, M. V. F., Battaglia, C., Graule, T., & Blugan, G. (2020). Large planar Na-β"-Al2O3 solid electrolytes for next generation Na-Batteries. Materials, 13(2), 433 (10 pp.). https://doi.org/10.3390/ma13020433
Performance analysis of Na-β&quot;-Al&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt;/YSZ solid electrolytes produced by conventional sintering and by vapor conversion of α-Al&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt;/YSZ
Ligon, S. C., Blugan, G., Bay, M. C., Battaglia, C., Heinz, M. V. F., & Graule, T. (2020). Performance analysis of Na-β"-Al2O3/YSZ solid electrolytes produced by conventional sintering and by vapor conversion of α-Al2O3/YSZ. Solid State Ionics, 345, 115169 (9 pp.). https://doi.org/10.1016/j.ssi.2019.115169
Experimental investigation of Mg(B&lt;sub&gt;3&lt;/sub&gt;H&lt;sub&gt;8&lt;/sub&gt;)&lt;sub&gt;2&lt;/sub&gt; dimensionality, materials for energy storage applications
Moury, R., Gigante, A., Remhof, A., Roedern, E., & Hagemann, H. (2020). Experimental investigation of Mg(B3H8)2 dimensionality, materials for energy storage applications. Dalton Transactions, 49(35), 12168-12173. https://doi.org/10.1039/D0DT02170A
Beyond hydrogen storage—metal hydrides as multifunctional materials for energy storage and conversion
Møller, K. T., Sargent, A. L., Remhof, A., & Heere, M. (2020). Beyond hydrogen storage—metal hydrides as multifunctional materials for energy storage and conversion. Inorganics, 8(11), 58 (5 pp.). https://doi.org/10.3390/inorganics8110058
&lt;em&gt;Nido&lt;/em&gt;-Borate/&lt;em&gt;Closo&lt;/em&gt;-borate mixed-anion electrolytes for all-solid-state batteries
Payandeh, S. H., Asakura, R., Avramidou, P., Rentsch, D., Łodziana, Z., Černý, R., … Battaglia, C. (2020). Nido-Borate/Closo-borate mixed-anion electrolytes for all-solid-state batteries. Chemistry of Materials, 32, 1101-1110. https://doi.org/10.1021/acs.chemmater.9b03933
Solid-state magnesium-ion conductors
Payandeh, S., Remhof, A., & Battaglia, C. (2020). Solid-state magnesium-ion conductors. In M. Fichtner (Ed.), Energy and environment series: Vol. 23. Magnesium batteries: research and applications (pp. 60-78). https://doi.org/10.1039/9781788016407-00060
Hydrogen sorption and reversibility of the LiBH&lt;sub&gt;4&lt;/sub&gt;-KBH&lt;sub&gt;4&lt;/sub&gt; eutectic system confined in a CMK-3 type carbon via melt infiltration
Peru, F., Payandeh, S. H., Charalambopoulou, G., Jensen, T. R., & Steriotis, T. (2020). Hydrogen sorption and reversibility of the LiBH4-KBH4 eutectic system confined in a CMK-3 type carbon via melt infiltration. C - Journal of Carbon Research, 6(2), 19 (10 pp.). https://doi.org/10.3390/c6020019