Active Filters

  • (-) Empa Laboratories = 502 Advanced Analytical Technologies
  • (-) Publication Year = 2006 - 2019
  • (-) Empa Authors ≠ Trottmann, Matthias
  • (-) Empa Laboratories ≠ 201 High Performance Ceramics
  • (-) Empa Laboratories = 299 Electron Microscopy Center
Search Results 1 - 15 of 15
  • RSS Feed
Select Page
Lanthanide-doped hafnia nanoparticles for multimodal theranostics: tailoring the physicochemical properties and interactions with biological entities
Gerken, L. R. H., Keevend, K., Zhang, Y., Starsich, F. H. L., Eberhardt, C., Panzarasa, G., … Herrmann, I. K. (2019). Lanthanide-doped hafnia nanoparticles for multimodal theranostics: tailoring the physicochemical properties and interactions with biological entities. ACS Applied Materials and Interfaces, 11(1), 437-448. https://doi.org/10.1021/acsami.8b20334
High-performance carbon/MnO<sub>2</sub> micromotors and their applications for pollutant removal
He, X., Büchel, R., Figi, R., Zhang, Y., Bahk, Y., Ma, J., & Wang, J. (2019). High-performance carbon/MnO2 micromotors and their applications for pollutant removal. Chemosphere, 219, 427-435. https://doi.org/10.1016/j.chemosphere.2018.12.051
Reinforced and superinsulating silica aerogel through in situ cross-linking with silane terminated prepolymers
Iswar, S., Snellings, G. M. B. F., Zhao, S., Erni, R., Bahk, Y. K., Wang, J., … Malfait, W. J. (2018). Reinforced and superinsulating silica aerogel through in situ cross-linking with silane terminated prepolymers. Acta Materialia, 147, 322-328. https://doi.org/10.1016/j.actamat.2018.01.031
Differentiation of dental restorative materials combining energy-dispersive X-ray fluorescence spectroscopy and post-mortem CT
Merriam, T., Kaufmann, R., Ebert, L., Figi, R., Erni, R., Pauer, R., & Sieberth, T. (2018). Differentiation of dental restorative materials combining energy-dispersive X-ray fluorescence spectroscopy and post-mortem CT. Forensic Science, Medicine, and Pathology, 14(2), 163-173. https://doi.org/10.1007/s12024-018-9979-5
Carboxylate functional groups mediate interaction with silver nanoparticles in biofilm matrix
Sambalova, O., Thorwarth, K., Heeb, N. V., Bleiner, D., Zhang, Y., Borgschulte, A., & Kroll, A. (2018). Carboxylate functional groups mediate interaction with silver nanoparticles in biofilm matrix. ACS Omega, 3(1), 724-733. https://doi.org/10.1021/acsomega.7b00982
Measuring air borne nanoparticles for characterizing hyphenated RDD-SMPS-ICPMS instrumentation
Hess, A., Tarik, M., Losert, S., Ilari, G., & Ludwig, C. (2016). Measuring air borne nanoparticles for characterizing hyphenated RDD-SMPS-ICPMS instrumentation. Journal of Aerosol Science, 92, 130-141. https://doi.org/10.1016/j.jaerosci.2015.10.007
Electron energy loss spectroscopy analysis of the interaction of Cr and V with MWCNTs
Ilari, G. M., Chawla, V., Matam, S., Zhang, Y., Michler, J., & Erni, R. (2016). Electron energy loss spectroscopy analysis of the interaction of Cr and V with MWCNTs. Micron, 84, 37-42. https://doi.org/10.1016/j.micron.2016.02.009
Characterization of materials released into water from paint containing nano-SiO<SUB>2</SUB>
Al-Kattan, A., Wichser, A., Vonbank, R., Brunner, S., Ulrich, A., Zuin, S., … Nowack, B. (2015). Characterization of materials released into water from paint containing nano-SiO2. Chemosphere, 119, 1314-1321. https://doi.org/10.1016/j.chemosphere.2014.02.005
Manipulating the reaction path of the CO<SUB>2</SUB> hydrogenation reaction in molecular sieves
Borgschulte, A., Callini, E., Stadie, N., Arroyo, Y., Rossell, M. D., Erni, R., … Ferri, D. (2015). Manipulating the reaction path of the CO2 hydrogenation reaction in molecular sieves. Catalysis Science and Technology, 5(9), 4613-4621. https://doi.org/10.1039/C5CY00528K
Online characterization of nano-aerosols released by commercial spray products using SMPS–ICPMS coupling
Losert, S., Hess, A., Ilari, G., von Goetz, N., & Hungerbuehler, K. (2015). Online characterization of nano-aerosols released by commercial spray products using SMPS–ICPMS coupling. Journal of Nanoparticle Research, 17, 293 (14 pp.). https://doi.org/10.1007/s11051-015-3078-2
Direct evidence of surface reduction in monoclinic BiVO<SUB>4</SUB>
Rossell, M. D., Agrawal, P., Borgschulte, A., Hébert, C., Passerone, D., & Erni, R. (2015). Direct evidence of surface reduction in monoclinic BiVO4. Chemistry of Materials, 27(10), 3593-3600. https://doi.org/10.1021/cm504248d
Behavior of TiO<SUB>2</SUB> released from nano-TiO<SUB>2</SUB>-containing paint and comparison to pristine nano-TiO<SUB>2</SUB>
Al-Kattan, A., Wichser, A., Zuin, S., Arroyo, Y., Golanski, L., Ulrich, A., & Nowack, B. (2014). Behavior of TiO2 released from nano-TiO2-containing paint and comparison to pristine nano-TiO2. Environmental Science and Technology, 48(12), 6710-6718. https://doi.org/10.1021/es5006219
Electron microscopic study of soot particulate matter emissions from aircraft turbine engines
Liati, A., Brem, B. T., Durdina, L., Vögtli, M., Arroyo Rojas Dasilva, Y., Dimopoulos Eggenschwiler, P., & Wang, J. (2014). Electron microscopic study of soot particulate matter emissions from aircraft turbine engines. Environmental Science and Technology, 48(18), 10975-10983. https://doi.org/10.1021/es501809b
Presence of nanoparticles in wash water from conventional silver and nano-silver textiles
Mitrano, D. M., Rimmele, E., Wichser, A., Erni, R., Height, M., & Nowack, B. (2014). Presence of nanoparticles in wash water from conventional silver and nano-silver textiles. ACS Nano, 8(7), 7208-7219. https://doi.org/10.1021/nn502228w
Characterization of silver nanoparticle products using asymmetric flow field flow fractionation with a multidetector approach ― a comparison to transmission electron microscopy and batch dynamic light scattering
Hagendorfer, H., Kaegi, R., Parlinska, M., Sinnet, B., Ludwig, C., & Ulrich, A. (2012). Characterization of silver nanoparticle products using asymmetric flow field flow fractionation with a multidetector approach ― a comparison to transmission electron microscopy and batch dynamic light scattering. Analytical Chemistry, 84(6), 2678-2685. https://doi.org/10.1021/ac202641d