Active Filters

  • (-) Organizational Unit = 502 Advanced Analytical Technologies
  • (-) Publication Year = 2006 - 2019
Search Results 1 - 20 of 487

Pages

  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Investigating the accumulation and translocation of titanium dioxide nanoparticles with different surface modifications in static and dynamic human placental transfer models
Aengenheister, L., Batbajar Dugershaw, B., Manser, P., Wichser, A., Schoenenberger, R., Wick, P., … Buerki-Thurnherr, T. (2019). Investigating the accumulation and translocation of titanium dioxide nanoparticles with different surface modifications in static and dynamic human placental transfer models. European Journal of Pharmaceutics and Biopharmaceutics, 142, 488-497. https://doi.org/10.1016/j.ejpb.2019.07.018
X-ray phase-contrast imaging for laser-induced shock waves
Antonelli, L., Barbato, F., Mancelli, D., Trela, J., Zeraouli, G., Boutoux, G., … Batani, D. (2019). X-ray phase-contrast imaging for laser-induced shock waves. Europhysics Letters, 125(3), 35002 (5 pp.). https://doi.org/10.1209/0295-5075/125/35002
Tabletop extreme ultraviolet time‐of‐flight spectrometry for trace analysis of high ionization energy samples
Arbelo, Y., & Bleiner, D. (2019). Tabletop extreme ultraviolet time‐of‐flight spectrometry for trace analysis of high ionization energy samples. Rapid Communications in Mass Spectrometry, 33(14), 1196-1206. https://doi.org/10.1002/rcm.8463
Quantitative phase contrast imaging of a shock-wave with a laser-plasma based X-ray source
Barbato, F., Atzeni, S., Batani, D., Bleiner, D., Boutoux, G., Brabetz, C., … Antonelli, L. (2019). Quantitative phase contrast imaging of a shock-wave with a laser-plasma based X-ray source. Scientific Reports, 9(1), 18805 (11 pp.). https://doi.org/10.1038/s41598-019-55074-1
Impact of liquid phase formation on microstructure and conductivity of Li-stabilized Na-<em>β</em>"-alumina ceramics
Bay, M. C., Heinz, M. V. F., Figi, R., Schreiner, C., Basso, D., Zanon, N., … Battaglia, C. (2019). Impact of liquid phase formation on microstructure and conductivity of Li-stabilized Na-β"-alumina ceramics. ACS Applied Energy Materials, 2(1), 687-693. https://doi.org/10.1021/acsaem.8b01715
Hydride formation diminishes CO<sub>2</sub> reduction rate on palladium
Billeter, E., Terreni, J., & Borgschulte, A. (2019). Hydride formation diminishes CO2 reduction rate on palladium. ChemPhysChem, 20, 1382-1391. https://doi.org/10.1002/cphc.201801081
Actinic damage of Y/Mo multilayer Bragg-optics by a tabletop plasma-driven extreme ultaviolet laser
Bleiner, D. (2019). Actinic damage of Y/Mo multilayer Bragg-optics by a tabletop plasma-driven extreme ultaviolet laser. In L. Juha, S. Bajt, & S. Guizard (Eds.), Proceedings of SPIE: Vol. 11035. Optics damage and materials processing by EUV/X-ray radiation VII (p. 110350J (7 pp.). https://doi.org/10.1117/12.2520899
Rapid 3D chemical visualization with tabletop XUV laser mass spectrometry
Bleiner, D., Rush, L. A., Rocca, J. J., & Menoni, C. S. (2019). Rapid 3D chemical visualization with tabletop XUV laser mass spectrometry. In A. Klisnick & C. S. Menoni (Eds.), Proceedings of SPIE: Vol. 11111. X-ray lasers and coherent X-ray sources: development and applications XIII (p. 1111107 (10 pp.). https://doi.org/10.1117/12.2528160
Impacts of alternative fuels on morphological and nanostructural characteristics of soot emissions from an aviation piston engine
Chen, L., Hu, X., Wang, J., & Yu, Y. (2019). Impacts of alternative fuels on morphological and nanostructural characteristics of soot emissions from an aviation piston engine. Environmental Science and Technology, 53(8), 4667-4674. https://doi.org/10.1021/acs.est.9b01059
Scaling up electrodes for photoelectrochemical water splitting: fabrication process and performance of 40 cm<sup>2</sup> LaTiO<sub>2</sub>N photoanodes
Dilger, S., Trottmann, M., & Pokrant, S. (2019). Scaling up electrodes for photoelectrochemical water splitting: fabrication process and performance of 40 cm2 LaTiO2N photoanodes. ChemSusChem, 12(9), 1931-1938. https://doi.org/10.1002/cssc.201802645
Nonvolatile particulate matter emissions of a business jet measured at ground level and estimated for cruising altitudes
Durdina, L., Brem, B. T., Schönenberger, D., Siegerist, F., Anet, J. G., & Rindlisbacher, T. (2019). Nonvolatile particulate matter emissions of a business jet measured at ground level and estimated for cruising altitudes. Environmental Science and Technology, 53(21), 12865-12872. https://doi.org/10.1021/acs.est.9b02513
Chemical composition and radiative properties of nascent particulate matter emitted by an aircraft turbofan burning conventional and alternative fuels
Elser, M., Brem, B. T., Durdina, L., Schönenberger, D., Siegerist, F., Fischer, A., & Wang, J. (2019). Chemical composition and radiative properties of nascent particulate matter emitted by an aircraft turbofan burning conventional and alternative fuels. Atmospheric Chemistry and Physics, 19(10), 6809-6820. https://doi.org/10.5194/acp-19-6809-2019
UV-initiated soft-tough multifunctional gel polymer electrolyte achieves stable-cycling Li-metal battery
Fan, W., Zhang, X., Li, C., Zhao, S., & Wang, J. (2019). UV-initiated soft-tough multifunctional gel polymer electrolyte achieves stable-cycling Li-metal battery. ACS Applied Energy Materials, 2(6), 4513-4520. https://doi.org/10.1021/acsaem.9b00766
Lanthanide-doped hafnia nanoparticles for multimodal theranostics: tailoring the physicochemical properties and interactions with biological entities
Gerken, L. R. H., Keevend, K., Zhang, Y., Starsich, F. H. L., Eberhardt, C., Panzarasa, G., … Herrmann, I. K. (2019). Lanthanide-doped hafnia nanoparticles for multimodal theranostics: tailoring the physicochemical properties and interactions with biological entities. ACS Applied Materials and Interfaces, 11(1), 437-448. https://doi.org/10.1021/acsami.8b20334
Determination of the delivered dose of nanoparticles in the trachea-bronchial and alveolar regions of the lung
Hammer, T., Fissan, H., & Wang, J. (2019). Determination of the delivered dose of nanoparticles in the trachea-bronchial and alveolar regions of the lung. NanoImpact, 14, 100162 (9 pp.). https://doi.org/10.1016/j.impact.2019.100162
High-performance carbon/MnO&lt;sub&gt;2&lt;/sub&gt; micromotors and their applications for pollutant removal
He, X., Büchel, R., Figi, R., Zhang, Y., Bahk, Y., Ma, J., & Wang, J. (2019). High-performance carbon/MnO2 micromotors and their applications for pollutant removal. Chemosphere, 219, 427-435. https://doi.org/10.1016/j.chemosphere.2018.12.051
Biotransformation of short-chain chlorinated paraffins (SCCPs) with LinA2: a HCH and HBCD converting bacterial dehydrohalogenase
Heeb, N. V., Schalles, S., Lehner, S., Schinkel, L., Schilling, I., Lienemann, P., … Kohler, H. P. E. (2019). Biotransformation of short-chain chlorinated paraffins (SCCPs) with LinA2: a HCH and HBCD converting bacterial dehydrohalogenase. Chemosphere, 226, 744-754. https://doi.org/10.1016/j.chemosphere.2019.03.169
Solar methanol synthesis by clean hydrogen production from seawater on offshore artificial islands
Hogerwaard, J., Dincer, I., Naterer, G. F., & Patterson, B. D. (2019). Solar methanol synthesis by clean hydrogen production from seawater on offshore artificial islands. International Journal of Energy Research, 43(11), 5687-5700. https://doi.org/10.1002/er.4627
Non-volatile particle emissions from aircraft turbine engines at ground-idle induce oxidative stress in bronchial cells
Jonsdottir, H. R., Delaval, M., Leni, Z., Keller, A., Brem, B. T., Siegerist, F., … Geiser, M. (2019). Non-volatile particle emissions from aircraft turbine engines at ground-idle induce oxidative stress in bronchial cells. Communications Biology, 2, 90 (11 pp.). https://doi.org/10.1038/s42003-019-0332-7
Electrocatalytic reduction of gaseous CO&lt;sub&gt;2 &lt;/sub&gt;to CO on Sn/Cu‐nanofiber‐based gas diffusion electrodes
Ju, W., Jiang, F., Ma, H., Pan, Z., Zhao, Y. ‐B., Pagani, F., … Battaglia, C. (2019). Electrocatalytic reduction of gaseous CO2 to CO on Sn/Cu‐nanofiber‐based gas diffusion electrodes. Advanced Energy Materials, 9(32), 1901514 (6 pp.). https://doi.org/10.1002/aenm.201901514
 

Pages