Active Filters

  • (-) Empa Laboratories = 505 Materials for Renewable Energy
  • (-) Publication Year = 2006 - 2018
  • (-) Empa Laboratories ≠ 302 Cellulose & Wood Materials
Search Results 1 - 20 of 222

Pages

  • RSS Feed
Select Page
Experimental performance investigation of a 2 kW methanation reactor
Gallandat, N., Mutschler, R., Vernay, V., Yang, H., & Züttel, A. (2018). Experimental performance investigation of a 2 kW methanation reactor. Sustainable Energy and Fuels, 2(5), 1101-1110. https://doi.org/10.1039/C8SE00073E
Concurrent photocatalytic hydrogen generation and dye degradation using MIL-125-NH<sub>2</sub> under visible light irradiation
Kampouri, S., Nguyen, T. N., Spodaryk, M., Palgrave, R. G., Züttel, A., Smit, B., & Stylianou, K. C. (2018). Concurrent photocatalytic hydrogen generation and dye degradation using MIL-125-NH2 under visible light irradiation. Advanced Functional Materials, 28(52), 1806368 (9 pp.). https://doi.org/10.1002/adfm.201806368
Destabilizing sodium borohydride with an ionic liquid
Lombardo, L., Yang, H., & Züttel, A. (2018). Destabilizing sodium borohydride with an ionic liquid. Materials Today Energy, 9, 391-396. https://doi.org/10.1016/j.mtener.2018.07.001
Selective and stable electroreduction of CO&lt;sub&gt;2&lt;/sub&gt; to CO at the copper/indium interface
Luo, W., Xie, W., Mutschler, R., Oveisi, E., De Gregorio, G. L., Buonsanti, R., & Züttel, A. (2018). Selective and stable electroreduction of CO2 to CO at the copper/indium interface. ACS Catalysis, 8(7), 6571-6581. https://doi.org/10.1021/acscatal.7b04457
CO<sub>2</sub> hydrogenation reaction over pristine Fe, Co, Ni, Cu and Al<sub>2</sub>O<sub>3</sub> supported Ru: Comparison and determination of the activation energies
Mutschler, R., Moioli, E., Luo, W., Gallandat, N., & Züttel, A. (2018). CO2 hydrogenation reaction over pristine Fe, Co, Ni, Cu and Al2O3 supported Ru: Comparison and determination of the activation energies. Journal of Catalysis, 366, 139-149. https://doi.org/10.1016/j.jcat.2018.08.002
Fast real time and quantitative gas analysis method for the investigation of the CO&lt;sub&gt;2&lt;/sub&gt; reduction reaction mechanism
Mutschler, R., Luo, W., Moioli, E., & Züttel, A. (2018). Fast real time and quantitative gas analysis method for the investigation of the CO2 reduction reaction mechanism. Review of Scientific Instruments, 89(11), 114102 (8 pp.). https://doi.org/10.1063/1.5047402
Hydrogen storage properties of various carbon supported NaBH<sub><small>4</small></sub> prepared via metathesis
Yang, H., Lombardo, L., Luo, W., Kim, W., & Züttel, A. (2018). Hydrogen storage properties of various carbon supported NaBH4 prepared via metathesis. International Journal of Hydrogen Energy, 43(14), 7108-7116. https://doi.org/10.1016/j.ijhydene.2018.02.142
In situ control of the adsorption species in CO<sub>2</sub> hydrogenation: determination of intermediates and byproducts
Zhao, K., Wang, L., Calizzi, M., Moioli, E., & Züttel, A. (2018). In situ control of the adsorption species in CO2 hydrogenation: determination of intermediates and byproducts. Journal of Physical Chemistry C, 122(36), 20888-20893. https://doi.org/10.1021/acs.jpcc.8b06508
An analytical model for the electrolyser performance derived from materials parameters
Gallandat, N., Romanowicz, K., & Züttel, A. (2017). An analytical model for the electrolyser performance derived from materials parameters. Journal of Power and Energy Engineering, 5(10), 34-49. https://doi.org/10.4236/jpee.2017.510003
Small-scale demonstration of the conversion of renewable energy to synthetic hydrocarbons
Gallandat, N., Bérard, J., Abbet, F., & Züttel, A. (2017). Small-scale demonstration of the conversion of renewable energy to synthetic hydrocarbons. Sustainable Energy and Fuels, 1(8), 1748-1758. https://doi.org/10.1039/C7SE00275K
Functionalised metal-organic frameworks: a novel approach to stabilising single metal atoms
Szilágyi, P. Á., Rogers, D. M., Zaiser, I., Callini, E., Turner, S., Borgschulte, A., … Dam, B. (2017). Functionalised metal-organic frameworks: a novel approach to stabilising single metal atoms. Journal of Materials Chemistry A, 5(30), 15559-15566. https://doi.org/10.1039/c7ta03134c
High influence of potassium bromide on thermal decomposition of ammonia borane
Biliškov, N., Vojta, D., Kótai, L., Szilágyi, I. M., Hunyadi, D., Pasinszki, T., … Züttel, A. (2016). High influence of potassium bromide on thermal decomposition of ammonia borane. Journal of Physical Chemistry C, 120(44), 25276-25288. https://doi.org/10.1021/acs.jpcc.6b09511
Complex and liquid hydrides for energy storage
Callini, E., Kocabas Atakli, Z. Ö., Hauback, B. C., Orimo, Sichi, Jensen, C., Dornheim, M., … Züttel, A. (2016). Complex and liquid hydrides for energy storage. Applied Physics A: Materials Science and Processing, 122(4), 353 (22 pp.). https://doi.org/10.1007/s00339-016-9881-5
Nanostructured materials for solid-state hydrogen storage: a review of the achievement of COST Action MP1103
Callini, E., Aguey-Zinsou, K. F., Ahuja, R., Ares, J. R., Bals, S., Biliškov, N., … Montone, A. (2016). Nanostructured materials for solid-state hydrogen storage: a review of the achievement of COST Action MP1103. International Journal of Hydrogen Energy, 41(32), 14404-14428. https://doi.org/10.1016/j.ijhydene.2016.04.025
Stabilization of volatile Ti(BH<SUB>4</SUB>)<SUB>3</SUB> by nano-confinement in a metal–organic framework
Callini, E., Szilágyi, P. Á., Paskevicius, M., Stadie, N. P., Réhault, J., Buckley, C. E., … Züttel, A. (2016). Stabilization of volatile Ti(BH4)3 by nano-confinement in a metal–organic framework. Chemical Science, 7(1), 666-672. https://doi.org/10.1039/C5SC03517A
Hydrogen storage by reversible metal hydride formation
Chen, P., Akiba, E., Orimo, Sichi, Zuettel, A., & Schlapbach, L. (2016). Hydrogen storage by reversible metal hydride formation. In D. Stolten & B. Emonts (Eds.), Hydrogen science and engineering: materials, processes, systems and technology (pp. 763-790). https://doi.org/10.1002/9783527674268.ch31
Investigation of a Pt containing washcoat on SiC foam for hydrogen combustion applications
Fernández, A., Arzac, G. M., Vogt, U. F., Hosoglu, F., Borgschulte, A., Jiménez de Haro, M. C., … Züttel, A. (2016). Investigation of a Pt containing washcoat on SiC foam for hydrogen combustion applications. Applied Catalysis B: Environmental, 180, 336-343. https://doi.org/10.1016/j.apcatb.2015.06.040
A novel method for the synthesis of solvent-free Mg(B<SUB>3</SUB>H<SUB>8</SUB>)<SUB>2</SUB>
Huang, J., Yan, Y., Remhof, A., Zhang, Y., Rentsch, D., Au, Y. S., … Züttel, A. (2016). A novel method for the synthesis of solvent-free Mg(B3H8)2. Dalton Transactions, 45(9), 3687-3690. https://doi.org/10.1039/C5DT04517G
The catalyzed hydrogen sorption mechanism in alkali alanates
Atakli, Z. Ö. K., Callini, E., Kato, S., Mauron, P., Orimo, S. I., & Züttel, A. (2015). The catalyzed hydrogen sorption mechanism in alkali alanates. Physical Chemistry Chemical Physics, 17(32), 20932-20940. https://doi.org/10.1039/c5cp01684c
The influence of ball-milling time on the dehydrogenation properties of the NaAlH<SUB>4</SUB>–MgH<SUB>2</SUB> composite
Bendyna, J. K., Dyjak, S., & Notten, P. H. L. (2015). The influence of ball-milling time on the dehydrogenation properties of the NaAlH4–MgH2 composite. International Journal of Hydrogen Energy, 40(11), 4200-4206. https://doi.org/10.1016/j.ijhydene.2015.01.026
 

Pages