Active Filters

  • (-) Organizational Unit = 505 Materials for Renewable Energy
  • (-) Publication Year = 2019 - 2019
Search Results 1 - 11 of 11
  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Application of hydrides in hydrogen storage and compression: achievements, outlook and perspectives
Bellosta von Colbe, J., Ares, J. R., Barale, J., Baricco, M., Buckley, C., Capurso, G., … Dornheim, M. (2019). Application of hydrides in hydrogen storage and compression: achievements, outlook and perspectives. International Journal of Hydrogen Energy, 44(15), 7780-7808. https://doi.org/10.1016/j.ijhydene.2019.01.104
Accurate measurement of pressure-composition isotherms and determination of thermodynamic and kinetic parameters of metal hydrides
Canjura Rodriguez, P., Gallandat, N., & Züttel, A. (2019). Accurate measurement of pressure-composition isotherms and determination of thermodynamic and kinetic parameters of metal hydrides. International Journal of Hydrogen Energy, 44(26), 13583-13591. https://doi.org/10.1016/j.ijhydene.2019.03.224
Study of borohydride ionic liquids as hydrogen storage materials
Lombardo, L., Yang, H., & Züttel, A. (2019). Study of borohydride ionic liquids as hydrogen storage materials. Journal of Energy Chemistry, 33, 17-21. https://doi.org/10.1016/j.jechem.2018.08.011
3D hierarchical porous indium catalyst for highly efficient electroreduction of CO<sub>2</sub>
Luo, W., Xie, W., Li, M., Zhang, J., & Züttel, A. (2019). 3D hierarchical porous indium catalyst for highly efficient electroreduction of CO2. Journal of Materials Chemistry A, 7(9), 4505-4515. https://doi.org/10.1039/c8ta11645h
Boosting CO production in electrocatalytic CO<sub>2</sub> reduction on highly porous Zn catalysts
Luo, W., Zhang, J., Li, M., & Züttel, A. (2019). Boosting CO production in electrocatalytic CO2 reduction on highly porous Zn catalysts. ACS Catalysis, 9(5), 3783-3791. https://doi.org/10.1021/acscatal.8b05109
Complex hydrides for energy storage
Milanese, C., Jensen, T. R., Hauback, B. C., Pistidda, C., Dornheim, M., Yang, H., … Baricco, M. (2019). Complex hydrides for energy storage. International Journal of Hydrogen Energy, 44, 7860-7874. https://doi.org/10.1016/j.ijhydene.2018.11.208
Parametric sensitivity in the Sabatier reaction over Ru/Al<small><sub>2</sub></small>O<small><sub>3</sub></small>-theoretical determination of the minimal requirements for reactor activation
Moioli, E., Gallandat, N., & Züttel, A. (2019). Parametric sensitivity in the Sabatier reaction over Ru/Al2O3-theoretical determination of the minimal requirements for reactor activation. Reaction Chemistry & Engineering, 4(1), 100-111. https://doi.org/10.1039/c8re00133b
Renewable energy storage via CO<sub>2</sub> and H<sub>2</sub> conversion to methane and methanol: assessment for small scale applications
Moioli, E., Mutschler, R., & Züttel, A. (2019). Renewable energy storage via CO2 and H2 conversion to methane and methanol: assessment for small scale applications. Renewable and Sustainable Energy Reviews, 107, 497-506. https://doi.org/10.1016/j.rser.2019.03.022
Hydrogen storage and electrochemical properties of LaNi<small><sub>5-x</sub></small>Cu<small><sub>x</sub></small> hydride-forming alloys
Spodaryk, M., Gasilova, N., & Züttel, A. (2019). Hydrogen storage and electrochemical properties of LaNi5-xCux hydride-forming alloys. Journal of Alloys and Compounds, 775, 175-180. https://doi.org/10.1016/j.jallcom.2018.10.009
The role of malachite nanorods for the electrochemical reduction of CO<sub>2</sub> to C<sub>2</sub> hydrocarbons
Spodaryk, M., Zhao, K., Zhang, J., Oveisi, E., & Züttel, A. (2019). The role of malachite nanorods for the electrochemical reduction of CO2 to C2 hydrocarbons. Electrochimica Acta, 297, 55-60. https://doi.org/10.1016/j.electacta.2018.11.124
Identifying reaction species by evolutionary fitting and kinetic analysis: an example of CO<sub>2</sub> hydrogenation in DRIFTS
Zhao, K., Wang, L., Moioli, E., Calizzi, M., & Züttel, A. (2019). Identifying reaction species by evolutionary fitting and kinetic analysis: an example of CO2 hydrogenation in DRIFTS. Journal of Physical Chemistry C, 123(14), 8785-8792. https://doi.org/10.1021/acs.jpcc.8b11105