Active Filters

  • (-) Organizational Unit = 505 Materials for Renewable Energy
  • (-) Publication Year = 2020 - 2020
Search Results 1 - 11 of 11
  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
CO<sub>2</sub> hydrogenation over unsupported Fe-Co nanoalloy catalysts
Calizzi, M., Mutschler, R., Patelli, N., Migliori, A., Zhao, K., Pasquini, L., & Züttel, A. (2020). CO2 hydrogenation over unsupported Fe-Co nanoalloy catalysts. Nanomaterials, 10(7), 1360 (12 pp.). https://doi.org/10.3390/nano10071360
Stable and high-efficiency methylammonium-free perovskite solar cells
Gao, X. X., Luo, W., Zhang, Y., Hu, R., Zhang, B., Züttel, A., … Nazeeruddin, M. K. (2020). Stable and high-efficiency methylammonium-free perovskite solar cells. Advanced Materials, 32(9), 1905502 (9 pp.). https://doi.org/10.1002/adma.201905502
Thermal stability of size-selected copper nanoparticles: effect of size, support and CO<sub>2</sub> hydrogenation atmosphere
Li, M., Borsay, A., Dakhchoune, M., Zhao, K., Luo, W., & Züttel, A. (2020). Thermal stability of size-selected copper nanoparticles: effect of size, support and CO2 hydrogenation atmosphere. Applied Surface Science, 510, 145439 (9 pp.). https://doi.org/10.1016/j.apsusc.2020.145439
Solvent- and catalyst-free carbon dioxide capture and reduction to formate with borohydride ionic liquid
Lombardo, L., Yang, H., Zhao, K., Dyson, P. J., & Züttel, A. (2020). Solvent- and catalyst-free carbon dioxide capture and reduction to formate with borohydride ionic liquid. ChemSusChem, 13(8), 2025-2031. https://doi.org/10.1002/cssc.201903514
Electrochemical reconstruction of ZnO for selective reduction of CO<sub>2</sub> to CO
Luo, W., Zhang, Q., Zhang, J., Moioli, E., Zhao, K., & Züttel, A. (2020). Electrochemical reconstruction of ZnO for selective reduction of CO2 to CO. Applied Catalysis B: Environmental, 273, 119060 (9 pp.). https://doi.org/10.1016/j.apcatb.2020.119060
A model-based comparison of Ru and Ni catalysts for the Sabatier reaction
Moioli, E., & Züttel, A. (2020). A model-based comparison of Ru and Ni catalysts for the Sabatier reaction. Sustainable Energy and Fuels, 4(3), 1396-1408. https://doi.org/10.1039/c9se00787c
Imaging catalysis: operando investigation of the CO<sub>2</sub> hydrogenation reaction dynamics by means of infrared thermography
Mutschler, R., Moioli, E., Zhao, K., Lombardo, L., Oveisi, E., Porta, A., … Züttel, A. (2020). Imaging catalysis: operando investigation of the CO2 hydrogenation reaction dynamics by means of infrared thermography. ACS Catalysis, 10(3), 1721-1730. https://doi.org/10.1021/acscatal.9b04475
Methanol production from CO<sub>2</sub><em> via</em> an integrated, formamide-assisted approach
Uranga, J. G., Gopakumar, A., Pfister, T., Imanzade, G., Lombardo, L., Gastelu, G., … Dyson, P. J. (2020). Methanol production from CO2 via an integrated, formamide-assisted approach. Sustainable Energy and Fuels, 4(4), 1773-1779. https://doi.org/10.1039/c9se01141b
Crossover of liquid products from electrochemical CO<sub>2</sub> reduction through gas diffusion electrode and anion exchange membrane
Zhang, J., Luo, W., & Züttel, A. (2020). Crossover of liquid products from electrochemical CO2 reduction through gas diffusion electrode and anion exchange membrane. Journal of Catalysis, 385, 140-145. https://doi.org/10.1016/j.jcat.2020.03.013
Unraveling and optimizing the metal-metal oxide synergistic effect in a highly active Co<sub>x</sub>(CoO)<sub>1–</sub><sub>x</sub> catalyst for CO<sub>2</sub> hydrogenation
Zhao, K., Calizzi, M., Moioli, E., Li, M., Borsay, A., Lombardo, L., … Züttel, A. (2020). Unraveling and optimizing the metal-metal oxide synergistic effect in a highly active Cox(CoO)1–x catalyst for CO2 hydrogenation. Journal of Energy Chemistry, 53, 241-250. https://doi.org/10.1016/j.jechem.2020.05.025
Synergistic Cu/CeO<sub>2</sub> carbon nanofiber catalysts for efficient CO<sub>2</sub> electroreduction
Zong, X., Zhang, J., Zhang, J., Luo, W., Züttel, A., & Xiong, Y. (2020). Synergistic Cu/CeO2 carbon nanofiber catalysts for efficient CO2 electroreduction. Electrochemistry Communications, 114, 106716 (7 pp.). https://doi.org/10.1016/j.elecom.2020.106716