Active Filters

  • (-) Empa Laboratories = 506 Technology and Society
  • (-) Publication Year = 2006 - 2018
  • (-) Keywords ≠ environment
Search Results 1 - 20 of 531

Pages

  • RSS Feed
Select Page
Considering the forms of released engineered nanomaterials in probabilistic material flow analysis
Adam, V., Caballero-Guzman, A., & Nowack, B. (2018). Considering the forms of released engineered nanomaterials in probabilistic material flow analysis. Environmental Pollution, 243, 17-27. https://doi.org/10.1016/j.envpol.2018.07.108
How suitable is LCA for nanotechnology assessment? Overview of current methodological pitfalls and potential solutions: 65th LCA Discussion Forum, Swiss Federal Institute of Technology, Zürich, May 24, 2017
Beloin-Saint-Pierre, D., Turner, D. A., Salieri, B., Haarman, A., & Hischier, R. (2018). How suitable is LCA for nanotechnology assessment? Overview of current methodological pitfalls and potential solutions: 65th LCA Discussion Forum, Swiss Federal Institute of Technology, Zürich, May 24, 2017. International Journal of Life Cycle Assessment, 23(1), 191-196. https://doi.org/10.1007/s11367-017-1399-3
An approach to assess indirect environmental effects of digitalization based on a time-use perspective
Bieser, J. C. T., & Hilty, L. M. (2018). An approach to assess indirect environmental effects of digitalization based on a time-use perspective. In H. J. Bungartz, D. Kranzlmüller, V. Weinberg, J. Weismüller, & V. Wohlgemuth (Eds.), Progress in IS. Advances and new trends in environmental informatics. Managing disruption, big data and open science (pp. 67-78). https://doi.org/10.1007/978-3-319-99654-7_5
Assessing indirect environmental effects of information and communication technology (ICT): a systematic literature review
Bieser, J. C. T., & Hilty, L. M. (2018). Assessing indirect environmental effects of information and communication technology (ICT): a systematic literature review. Sustainability, 10(8), 2662 (19 pp.). https://doi.org/10.3390/su10082662
Indirect effects of the digital transformation on environmental sustainability: methodological challenges in assessing the greenhouse gas abatement potential of ICT
Bieser, J. C. T., & Hilty, L. M. (2018). Indirect effects of the digital transformation on environmental sustainability: methodological challenges in assessing the greenhouse gas abatement potential of ICT. In B. Penzenstadler, S. Easterbrook, C. Venters, & S. I. Ahmed (Eds.), EPiC series in computing: Vol. 52. ICT4S2018. 5th International conference on information and communication technology for sustainability (pp. 68-81). https://doi.org/10.29007/lx7q
Gesellschaftliche Transformation – welche Rolle(n) für den Staat?
Bornemann, B., Ejderyan, O., Stauffacher, M., & Wäger, P. (2018). Gesellschaftliche Transformation – welche Rolle(n) für den Staat? GAIA: Ecological Perspectives for Science and Society, 27(1), 182-184. https://doi.org/10.14512/gaia.27.1.17
Waste as a resource for sustainable development
Böni, H., Widmer, R., Gasser, M., & Haarman, A. (2018). Waste as a resource for sustainable development. In H. Luck, J. M. Hensch, & S. Schaller (Eds.), Technical report 2018 (pp. 28-31). SENS Foundation.
Weiter- und Wiederverwendung von elektrischen und elektronischen Geräten. Ökologische und ökonomische Analyse. Schlussbericht
Böni, H., & Hischier, R. (2018). Weiter- und Wiederverwendung von elektrischen und elektronischen Geräten. Ökologische und ökonomische Analyse. Schlussbericht. sine nomine.
Prospective nanomaterial mass flows to the environment by life cycle stage from five applications containing CuO, DPP, FeO<sub><em>x</em></sub>, CNT and SiO<sub>2</sub>
Caballero-Guzman, A., & Nowack, B. (2018). Prospective nanomaterial mass flows to the environment by life cycle stage from five applications containing CuO, DPP, FeOx, CNT and SiO2. Journal of Cleaner Production, 203, 990-1002. https://doi.org/10.1016/j.jclepro.2018.08.265
Sustainability-oriented higher education networks: characteristics and achievements in the context of the UN DESD
Dlouhá, J., Henderson, L., Kapitulčinová, D., & Mader, C. (2018). Sustainability-oriented higher education networks: characteristics and achievements in the context of the UN DESD. Journal of Cleaner Production, 172, 4263-4276. https://doi.org/10.1016/j.jclepro.2017.07.239
A rocky road to a clean circular economy
Gasser, M., & Haarman, A. (2018). A rocky road to a clean circular economy. In H. Luck, J. M. Hensch, & S. Schaller (Eds.), Technical report 2018 (pp. 24-27). SENS Foundation.
Feasibility study for a certification of sustainably recycled plastics in India
Gasser, M., Hüdepohl, H., & Haarman, A. (2018). Feasibility study for a certification of sustainably recycled plastics in India. Sustainable Recycling Industries (SRI).
Risks, release and concentrations of engineered nanomaterial in the environment
Giese, B., Klaessig, F., Park, B., Kaegi, R., Steinfeldt, M., Wigger, H., … Gottschalk, F. (2018). Risks, release and concentrations of engineered nanomaterial in the environment. Scientific Reports, 8(1), 1565 (18 pp.). https://doi.org/10.1038/s41598-018-19275-4
Energy consumption and hardware utilization of standard software: methods and measurements for software sustainability
Guldner, A., Garling, M., Morgen, M., Naumann, S., Kern, E., & Hilty, L. M. (2018). Energy consumption and hardware utilization of standard software: methods and measurements for software sustainability. In B. Otjacques, P. Hitzelberger, S. Naumann, & V. Wohlgemuth (Eds.), Progress in IS. From science to society: new trends in environmental informatics (pp. 251-261). https://doi.org/10.1007/978-3-319-65687-8_22
Recovery of scarce technology metals from end-of-life vehicles – a comparative LCA. Final report for work package C4 of the EVA project (Elektronik – Verwertung – Altautos)
Haarman, A., Hischier, R., & Widmer, R. (2018). Recovery of scarce technology metals from end-of-life vehicles – a comparative LCA. Final report for work package C4 of the EVA project (Elektronik – Verwertung – Altautos). Empa.
Motivating students on ICT-related study programs to engage with the subject of sustainable development
Hilty, L. M., & Huber, P. (2018). Motivating students on ICT-related study programs to engage with the subject of sustainable development. International Journal of Sustainability in Higher Education, 19(3), 642-656. https://doi.org/10.1108/IJSHE-02-2017-0027
Car vs. packaging – a first, simple (environmental) sustainability assessment of our changing shopping behaviour
Hischier, R. (2018). Car vs. packaging – a first, simple (environmental) sustainability assessment of our changing shopping behaviour. Sustainability, 10(9), 3061 (12 pp.). https://doi.org/10.3390/su10093061
Early-stage sustainability evaluation of nanoscale cathode materials for lithium ion batteries
Hischier, R., Kwon, N. H., Brog, J. P., & Fromm, K. M. (2018). Early-stage sustainability evaluation of nanoscale cathode materials for lithium ion batteries. ChemSusChem, 11(13), 2068-2076. https://doi.org/10.1002/cssc.201800109
An agent-based model of wood markets in Switzerland
Holm, S. (2018). An agent-based model of wood markets in Switzerland [Doctoral dissertation]. University of Zurich.
An agent-based model of wood markets: scenario analysis
Holm, S., Thees, O., Lemm, R., Olschewski, R., & Hilty, L. M. (2018). An agent-based model of wood markets: scenario analysis. Forest Policy and Economics, 95, 26-36. https://doi.org/10.1016/j.forpol.2018.07.005
 

Pages