Active Filters

  • (-) Organizational Unit = 201 High Performance Ceramics
  • (-) Publication Year = 2006 - 2019
  • (-) Keywords ≠ PZT
  • (-) Keywords = alumina
Search Results 1 - 9 of 9
  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Stable crack propagation in free standing thermal sprayed Al<sub>2</sub>O<sub>3</sub> and Al<sub>2</sub>O<sub>3</sub>—ZrO<sub>2</sub>—TiO<sub>2</sub> coatings
Neumann, M., Gehre, P., Kuebler, J., Dadivanyan, N., Jelitto, H., Schneider, G. A., & Aneziris, C. G. (2019). Stable crack propagation in free standing thermal sprayed Al2O3 and Al2O3—ZrO2—TiO2 coatings. Ceramics International, 45(7), 8761-8766. https://doi.org/10.1016/j.ceramint.2019.01.200
Influence of the printing parameters on the quality of alumina ceramics shaped by UV-LCM technology
Ożóg, P., Blugan, G., Kata, D., & Graule, T. (2019). Influence of the printing parameters on the quality of alumina ceramics shaped by UV-LCM technology. Journal of Ceramic Science and Technology, 10(2), 63-72. https://doi.org/10.4416/JCST2019-00023
Effect of carbon contamination on the sintering of alumina ceramics
Michálek, M., Michálková, M., Blugan, G., & Kuebler, J. (2018). Effect of carbon contamination on the sintering of alumina ceramics. Journal of the European Ceramic Society, 38, 193-199. https://doi.org/10.1016/j.jeurceramsoc.2017.08.011
Strength of pure alumina ceramics above 1 GPa
Michálek, M., Michálková, M., Blugan, G., & Kuebler, J. (2018). Strength of pure alumina ceramics above 1 GPa. Ceramics International, 44(3), 3255-3260. https://doi.org/10.1016/j.ceramint.2017.11.098
The influence of spinel and magnesia powder bed on mechanical properties of alumina sintered under air and nitrogen atmosphere
Michálková, M., Michálek, M., Blugan, G., & Kuebler, J. (2018). The influence of spinel and magnesia powder bed on mechanical properties of alumina sintered under air and nitrogen atmosphere. Advances in Applied Ceramics, 117(8), 485-492. https://doi.org/10.1080/17436753.2018.1502063
Ceramic core–shell composites with modified mechanical properties prepared by thermoplastic co-extrusion
Kastyl, J., Chlup, Z., Clemens, F., & Trunec, M. (2015). Ceramic core–shell composites with modified mechanical properties prepared by thermoplastic co-extrusion. Journal of the European Ceramic Society, 35(10), 2873-2881. https://doi.org/10.1016/j.jeurceramsoc.2015.04.012
Obtenção de um revestimento compósito de poliéster-uretana reforçado com alumina pela técnica de deposição por imersão sobre fibras de poliamida 6
Sánchez, F. A. L., Reifler, F. A., Clemens, F., Amico, S. C., & Bergmann, C. P. (2009). Obtenção de um revestimento compósito de poliéster-uretana reforçado com alumina pela técnica de deposição por imersão sobre fibras de poliamida 6. Cerâmica, 55(336), 379-384. https://doi.org/10.1590/S0366-69132009000400007
Homogeneous Ni-P/Al<SUB>2</SUB>O<SUB>3</SUB> nanocomposite coatings from stable dispersions in electroless nickel baths
de Hazan, Y., Werner, D., Z'graggen, M., Groteklaes, M., & Graule, T. (2008). Homogeneous Ni-P/Al2O3 nanocomposite coatings from stable dispersions in electroless nickel baths. Journal of Colloid and Interface Science, 328(1), 103-109. https://doi.org/10.1016/j.jcis.2008.08.033
Interactions and dispersion stability of aluminum oxide colloidal particles in electroless nickel solutions in the presence of comb polyelectrolytes
de Hazan, Y., Reuter, T., Werner, D., Clasen, R., & Graule, T. (2008). Interactions and dispersion stability of aluminum oxide colloidal particles in electroless nickel solutions in the presence of comb polyelectrolytes. Journal of Colloid and Interface Science, 323(2), 293-300. https://doi.org/10.1016/j.jcis.2008.03.036