Active Filters

  • (-) Organizational Unit = 201 High Performance Ceramics
  • (-) Publication Year = 2019 - 2019
Search Results 1 - 20 of 35
Select Page
Enhanced photocatalytic performance of poly(3,4-ethylenedioxythiophene)-coated TiO<sub>2</sub> nanotube electrodes
Abdelnasser, S., Park, G., Han, H., Toth, R., & Yoon, H. (2019). Enhanced photocatalytic performance of poly(3,4-ethylenedioxythiophene)-coated TiO2 nanotube electrodes. Synthetic Metals, 251, 120-126. https://doi.org/10.1016/j.synthmet.2019.03.018
Inkjet-printed and deep-UV-annealed YAlO&lt;sub&gt;&lt;em&gt;x&lt;/em&gt;&lt;/sub&gt; dielectrics for high-performance IGZO thin-film transistors on flexible substrates
Bolat, S., Fuchs, P., Knobelspies, S., Temel, O., Torres Sevilla, G., Gilshtein, E., … Romanyuk, Y. E. (2019). Inkjet-printed and deep-UV-annealed YAlOx dielectrics for high-performance IGZO thin-film transistors on flexible substrates. Advanced Electronic Materials, 5(6), 1800843 (9 pp.). https://doi.org/10.1002/aelm.201800843
Development of UV-curable ZrO&lt;sub&gt;2&lt;/sub&gt; slurries for additive manufacturing (LCM-DLP) technology
Borlaf, M., Serra-Capdevila, A., Colominas, C., & Graule, T. (2019). Development of UV-curable ZrO2 slurries for additive manufacturing (LCM-DLP) technology. Journal of the European Ceramic Society, 39(13), 3797-3803. https://doi.org/10.1016/j.jeurceramsoc.2019.05.023
Fabrication of ZrO&lt;sub&gt;2&lt;/sub&gt; and ATZ materials via UV-LCM-DLP additive manufacturing technology
Borlaf, M., Szubra, N., Serra-Capdevila, A., Kubiak, W. W., & Graule, T. (2019). Fabrication of ZrO2 and ATZ materials via UV-LCM-DLP additive manufacturing technology. Journal of the European Ceramic Society. https://doi.org/10.1016/j.jeurceramsoc.2019.11.037
Electrochemical energy systems. Foundations, energy storage and conversion
Braun, A. (2019). Electrochemical energy systems. Foundations, energy storage and conversion. De Gruyter Textbook. https://doi.org/10.1515/9783110561838
Hole and protonic polarons in perovskites
Braun, A., Chen, Q., & Yelon, A. (2019). Hole and protonic polarons in perovskites. Chimia, 73(11), 936-942. https://doi.org/10.2533/chimia.2019.936
Swiss stakeholder workshop for the SUNRISE H2020 FET-flagship project
Braun, A., & Toth, R. (2019). Swiss stakeholder workshop for the SUNRISE H2020 FET-flagship project. Chimia, 73(11), 952-956. https://doi.org/10.2533/chimia.2019.952
Von der Nordsee bis Venedig. Mit Wasserstoff und Brennstoffzelle Europa "erfahren". Eine "Auto"-Biographie.
Braun, A. (2019). Von der Nordsee bis Venedig. Mit Wasserstoff und Brennstoffzelle Europa "erfahren". Eine "Auto"-Biographie. sine loco: Dr. Artur Braun.
Purification and functionalisation of multi-walled carbon nanotubes
Domagała, K., Borlaf, M., Traber, J., Kata, D., & Graule, T. (2019). Purification and functionalisation of multi-walled carbon nanotubes. Materials Letters, 253, 272-275. https://doi.org/10.1016/j.matlet.2019.06.085
Silicon oxycarbide—tin nanocomposite as a high‐power‐density anode for Li‐ion batteries
Dubey, R. J. ‐C., Sasikumar, P. V. W., Krumeich, F., Blugan, G., Kuebler, J., Kravchyk, K. V., … Kovalenko, M. V. (2019). Silicon oxycarbide—tin nanocomposite as a high‐power‐density anode for Li‐ion batteries. Advanced Science, 6(19), 1901220 (9 pp.). https://doi.org/10.1002/advs.201901220
An innovative selective laser melting process for hematite-doped aluminum oxide
Florio, K., Pfeiffer, S., Makowska, M., Casati, N., Verga, F., Graule, T., … Wegener, K. (2019). An innovative selective laser melting process for hematite-doped aluminum oxide. Advanced Engineering Materials, 21(6), 1801352 (10 pp.). https://doi.org/10.1002/adem.201801352
Fused deposition modeling of mullite structures from a preceramic polymer and γ-alumina
Gorjan, L., Tonello, R., Sebastian, T., Colombo, P., & Clemens, F. (2019). Fused deposition modeling of mullite structures from a preceramic polymer and γ-alumina. Journal of the European Ceramic Society, 39(7), 2463-2471. https://doi.org/10.1016/j.jeurceramsoc.2019.02.032
Sintering behavior of NbC based cemented carbides bonded with M2 high speed steel
Hadian, A., Zamani, C., & Clemens, F. J. (2019). Sintering behavior of NbC based cemented carbides bonded with M2 high speed steel. Ceramics International, 45(7), 8616-8625. https://doi.org/10.1016/j.ceramint.2019.01.181
Thermoplastic processing and debinding behavior of NbC-M2 high speed steel cemented carbide
Hadian, A., Zamani, C., Gorjan, L., & Clemens, F. J. (2019). Thermoplastic processing and debinding behavior of NbC-M2 high speed steel cemented carbide. Journal of Materials Processing Technology, 263, 91-100. https://doi.org/10.1016/j.jmatprotec.2018.08.006
Tactic droplets at the liquid-air interface
Holló, G., Leelőssy, Á., Tóth, R., & Lagzi, I. (2019). Tactic droplets at the liquid-air interface. In S. Nakata, V. Pimienta, I. Lagzi, H. Kitahata, & N. J. Suematsu (Eds.), Theoretical and computational chemistry series: Vol. 14. Self-organized motion: physicochemical design based on nonlinear dynamics (pp. 167-181). https://doi.org/10.1039/9781788013499-00167
Fe-doping in double perovskite PrBaCo<sub>2(1-x)</sub>Fe<sub>2x</sub>O<sub>6-δ</sub>: insights into structural and electronic efects to enhance oxygen evolution catalyst stability
Kim, B. J., Fabbri, E., Castelli, I. E., Borlaf, M., Graule, T., Nachtegaal, M., & Schmidt, T. J. (2019). Fe-doping in double perovskite PrBaCo2(1-x)Fe2xO6-δ: insights into structural and electronic efects to enhance oxygen evolution catalyst stability. Catalysts, 9(3), 263 (17 pp.). https://doi.org/10.3390/catal9030263
Functional role of Fe-doping in Co-based perovskite oxide catalysts for oxygen evolution reaction
Kim, B. J., Fabbri, E., Abbott, D. F., Cheng, X., Clark, A. H., Nachtegaal, M., … Schmidt, T. J. (2019). Functional role of Fe-doping in Co-based perovskite oxide catalysts for oxygen evolution reaction. Journal of the American Chemical Society, 141, 5231-5240. https://doi.org/10.1021/jacs.8b12101
Maskless lithography of silazanes for fabrication of ceramic micro-components
Ligon, S. C., Blugan, G., & Kuebler, J. (2019). Maskless lithography of silazanes for fabrication of ceramic micro-components. Ceramics International, 45(2), 2345-2350. https://doi.org/10.1016/j.ceramint.2018.10.151
Pulsed UV laser processing of carbosilane and silazane polymers
Ligon, S. C., Blugan, G., & Kuebler, J. (2019). Pulsed UV laser processing of carbosilane and silazane polymers. Materials, 12(3), 372 (15 p.). https://doi.org/10.3390/ma12030372
Draw-spun, photonically annealed Ag fibers as alternative electrodes for flexible CIGS solar cells
Liu, Y., Zeder, S., Lin, S., Carron, R., Grossmann, G., Bolat, S., … Romanyuk, Y. E. (2019). Draw-spun, photonically annealed Ag fibers as alternative electrodes for flexible CIGS solar cells. Science and Technology of Advanced Materials, 20(1), 26-34. https://doi.org/10.1080/14686996.2018.1552480