Active Filters

  • (-) Empa Laboratories = 203 Magnetic and Functional Thin Films
  • (-) Publication Year = 2006 - 2018
  • (-) Keywords = magnetron sputtering
Search Results 1 - 11 of 11
  • RSS Feed
Select Page
External magnetic field increases both plasma generation and deposition rate in HiPIMS
Ganesan, R., Akhavan, B., Dong, X., McKenzie, D. R., & Bilek, M. M. M. (2018). External magnetic field increases both plasma generation and deposition rate in HiPIMS. Surface and Coatings Technology, 352, 671-679. https://doi.org/10.1016/j.surfcoat.2018.02.076
Tunable ion flux density and its impact on AlN thin films deposited in a confocal DC magnetron sputtering system
Trant, M., Fischer, M., Thorwarth, K., Gauter, S., Patscheider, J., & Hug, H. J. (2018). Tunable ion flux density and its impact on AlN thin films deposited in a confocal DC magnetron sputtering system. Surface and Coatings Technology, 348, 159-167. https://doi.org/10.1016/j.surfcoat.2018.04.091
Control of Ti<SUB>1−</SUB><I><SUB>x</SUB></I>Si<I><SUB>x</SUB></I>N nanostructure <I>via</I> tunable metal-ion momentum transfer during HIPIMS/DCMS co-deposition
Greczynski, G., Patscheider, J., Lu, J., Alling, B., Ektarawong, A., Jensen, J., … Hultman, L. (2015). Control of Ti1−xSixN nanostructure via tunable metal-ion momentum transfer during HIPIMS/DCMS co-deposition. Surface and Coatings Technology, 280, 174-184. https://doi.org/10.1016/j.surfcoat.2015.09.001
The Si&lt;sub&gt;3&lt;/sub&gt;N&lt;sub&gt;4&lt;/sub&gt;/TiN interface: 1. TiN(001) grown and analyzed &lt;em&gt;in situ&lt;/em&gt; using angle-resolved X-ray photoelectron spectroscopy
Haasch, R. T., Patscheider, J., Hellgren, N., Petrov, I., & Greene, J. E. (2012). The Si3N4/TiN interface: 1. TiN(001) grown and analyzed in situ using angle-resolved X-ray photoelectron spectroscopy. Surface Science Spectra, 19(1), 33-41. https://doi.org/10.1116/11.20121001
The Si&lt;sub&gt;3&lt;/sub&gt;N&lt;sub&gt;4&lt;/sub&gt;/TiN interface: 2. Si&lt;sub&gt;3&lt;/sub&gt;N&lt;sub&gt;4&lt;/sub&gt;/TiN(001) grown with a ―7 V substrate bias and analyzed &lt;em&gt;in situ&lt;/em&gt; using angle-resolved X-ray photoelectron spec
Haasch, R. T., Patscheider, J., Hellgren, N., Petrov, I., & Greene, J. E. (2012). The Si3N4/TiN interface: 2. Si3N4/TiN(001) grown with a ―7 V substrate bias and analyzed in situ using angle-resolved X-ray photoelectron spectroscopy. Surface Science Spectra, 19(1), 42-51. https://doi.org/10.1116/11.20121002
The Si&lt;sub&gt;3&lt;/sub&gt;N&lt;sub&gt;4&lt;/sub&gt;/TiN interface: 3. Si&lt;sub&gt;3&lt;/sub&gt;N&lt;sub&gt;4&lt;/sub&gt;/TiN(001) grown with a ―150 V substrate bias and analyzed &lt;em&gt;in situ&lt;/em&gt; using angle-resolved X-ray photoelectron sp
Haasch, R. T., Patscheider, J., Hellgren, N., Petrov, I., & Greene, J. E. (2012). The Si3N4/TiN interface: 3. Si3N4/TiN(001) grown with a ―150 V substrate bias and analyzed in situ using angle-resolved X-ray photoelectron spectroscopy. Surface Science Spectra, 19(1), 52-61. https://doi.org/10.1116/11.20121003
The Si&lt;sub&gt;3&lt;/sub&gt;N&lt;sub&gt;4&lt;/sub&gt;/TiN interface: 4. Si&lt;sub&gt;3&lt;/sub&gt;N&lt;sub&gt;4&lt;/sub&gt;/TiN(001) grown with a ―250 V substrate bias and analyzed &lt;em&gt;in situ&lt;/em&gt; using angle-resolved X-ray photoelectron sp
Haasch, R. T., Patscheider, J., Hellgren, N., Petrov, I., & Greene, J. E. (2012). The Si3N4/TiN interface: 4. Si3N4/TiN(001) grown with a ―250 V substrate bias and analyzed in situ using angle-resolved X-ray photoelectron spectroscopy. Surface Science Spectra, 19(1), 62-71. https://doi.org/10.1116/11.20121004
The Si&lt;sub&gt;3&lt;/sub&gt;N&lt;sub&gt;4&lt;/sub&gt;/TiN interface: 5. TiN/Si&lt;sub&gt;3&lt;/sub&gt;N&lt;sub&gt;4&lt;/sub&gt; grown and analyzed &lt;em&gt;in situ&lt;/em&gt; using angle-resolved X-ray photoelectron spectroscopy
Haasch, R. T., Patscheider, J., Hellgren, N., Petrov, I., & Greene, J. E. (2012). The Si3N4/TiN interface: 5. TiN/Si3N4 grown and analyzed in situ using angle-resolved X-ray photoelectron spectroscopy. Surface Science Spectra, 19(1), 72-81. https://doi.org/10.1116/11.20121005
The Si&lt;sub&gt;3&lt;/sub&gt;N&lt;sub&gt;4&lt;/sub&gt;/TiN interface: 6. Si/TiN(001) grown and analyzed &lt;em&gt;in situ&lt;/em&gt; using angle-resolved X-ray photoelectron spectroscopy
Haasch, R. T., Patscheider, J., Hellgren, N., Petrov, I., & Greene, J. E. (2012). The Si3N4/TiN interface: 6. Si/TiN(001) grown and analyzed in situ using angle-resolved X-ray photoelectron spectroscopy. Surface Science Spectra, 19(1), 82-91. https://doi.org/10.1116/11.20121006
The Si&lt;sub&gt;3&lt;/sub&gt;N&lt;sub&gt;4&lt;/sub&gt;/TiN interface: 7. Ti/TiN(001) grown and analyzed &lt;em&gt;in situ&lt;/em&gt; using X-ray photoelectron spectroscopy
Haasch, R. T., Patscheider, J., Hellgren, N., Petrov, I., & Greene, J. E. (2012). The Si3N4/TiN interface: 7. Ti/TiN(001) grown and analyzed in situ using X-ray photoelectron spectroscopy. Surface Science Spectra, 19(1), 92-97. https://doi.org/10.1116/11.20121007
Tribological properties of nanocomposite CrC<SUB>x</SUB>/a-C:H thin films
Gassner, G., Patscheider, J., Mayrhofer, P. H., Šturm, S., Scheu, C., & Mitterer, C. (2007). Tribological properties of nanocomposite CrCx/a-C:H thin films. Tribology Letters, 27(1), 97-104. https://doi.org/10.1007/s11249-007-9221-1