Active Filters

  • (-) Empa Laboratories = 206 Mechanics of Materials and Nanostructures
  • (-) Publication Year = 2006 - 2019
  • (-) Empa Authors ≠ Guillonneau, Gaylord
  • (-) Empa Laboratories = 204 Advanced Materials Processing
Search Results 1 - 20 of 61

Pages

  • RSS Feed
Select Page
Stress induced martensite variants revealed by in situ high resolution electron backscatter diffraction (HR-EBSD)
Arabi-Hashemi, A., Guo, Y., Michler, J., Casari, D., Leinenbach, C., & Maeder, X. (2018). Stress induced martensite variants revealed by in situ high resolution electron backscatter diffraction (HR-EBSD). Materials and Design, 151, 83-88. https://doi.org/10.1016/j.matdes.2018.04.006
Enhanced gradient crystal-plasticity study of size effects in a <I>β</I>-titanium alloy
Demiral, M., Nowag, K., Roy, A., Ghisleni, R., Michler, J., & Silberschmidt, V. V. (2017). Enhanced gradient crystal-plasticity study of size effects in a β-titanium alloy. Modelling and Simulation in Materials Science and Engineering, 25(3), 035013 (19 pp.). https://doi.org/10.1088/1361-651X/aa5ce3
Microstructure and mechanical properties of near net shaped aluminium/alumina nanocomposites fabricated by powder metallurgy
Kallip, K., Kishore Babu, N., AlOgab, K. A., Kollo, L., Maeder, X., Arroyo, Y., & Leparoux, M. (2017). Microstructure and mechanical properties of near net shaped aluminium/alumina nanocomposites fabricated by powder metallurgy. Journal of Alloys and Compounds, 714, 133-143. https://doi.org/10.1016/j.jallcom.2017.04.233
Origin of scuffing in grey cast iron-steel tribo-system
Saeidi, F., Taylor, A. A., Meylan, B., Hoffmann, P., & Wasmer, K. (2017). Origin of scuffing in grey cast iron-steel tribo-system. Materials and Design, 116, 622-630. https://doi.org/10.1016/j.matdes.2016.12.044
Understanding the mechanical behavior of fiber/matrix interfaces during push-in tests by means of finite element simulations and a cohesive zone model
Esqué-de los Ojos, D., Ghisleni, R., Battisti, A., Mohanty, G., Michler, J., Sort, J., & Brunner, A. J. (2016). Understanding the mechanical behavior of fiber/matrix interfaces during push-in tests by means of finite element simulations and a cohesive zone model. Computational Materials Science, 117, 330-337. https://doi.org/10.1016/j.commatsci.2016.02.009
Influence of microstructure and strengthening mechanism of AlMg5–Al<SUB>2</SUB>O<SUB>3</SUB> nanocomposites prepared via spark plasma sintering
N., K. B., Kallip, K., Leparoux, M., AlOgab, K. A., Maeder, X., & Arroyo Rojas Dasilva, Y. (2016). Influence of microstructure and strengthening mechanism of AlMg5–Al2O3 nanocomposites prepared via spark plasma sintering. Materials and Design, 95, 534-544. https://doi.org/10.1016/j.matdes.2016.01.138
Microstructure, mechanical, and impression creep properties of AlMg5–0.5 vol% Al<SUB>2</SUB>O<SUB>3</SUB> nanocomposites
Talari, M. K., Babu, N. K., Kallip, K., Leparoux, M., Koller, R. E., AlOgab, K. A., & Maeder, X. (2016). Microstructure, mechanical, and impression creep properties of AlMg5–0.5 vol% Al2O3 nanocomposites. Advanced Engineering Materials, 18(11), 1958-1966. https://doi.org/10.1002/adem.201600301
The plasticity of indium antimonide: insights from variable temperature, strain rate jump micro-compression testing
Wheeler, J. M., Thilly, L., Morel, A., Taylor, A. A., Montagne, A., Ghisleni, R., & Michler, J. (2016). The plasticity of indium antimonide: insights from variable temperature, strain rate jump micro-compression testing. Acta Materialia, 106, 283-289. https://doi.org/10.1016/j.actamat.2015.12.036
Single fiber push-out characterization of interfacial properties of hierarchical CNT-carbon fiber composites prepared by electrophoretic deposition
Battisti, A., Esqué-de los Ojos, D., Ghisleni, R., & Brunner, A. J. (2014). Single fiber push-out characterization of interfacial properties of hierarchical CNT-carbon fiber composites prepared by electrophoretic deposition. Composites Science and Technology, 95(10), 121-127. https://doi.org/10.1016/j.compscitech.2014.02.017
Influence of mosaicity on the fracture behavior of sapphire
Graça, S., Trabadelo, V., Neels, A., Kuebler, J., Le Nader, V., Gamez, G., … Wasmer, K. (2014). Influence of mosaicity on the fracture behavior of sapphire. Acta Materialia, 67, 67-80. https://doi.org/10.1016/j.actamat.2013.12.004
Caught in the act: grain-switching and quadrijunction formation in annealed aluminum
Pathak, S., Doherty, R. D., Rollett, A. D., Michler, J., & Wasmer, K. (2013). Caught in the act: grain-switching and quadrijunction formation in annealed aluminum. Scripta Materialia, 69(1), 37-40. https://doi.org/10.1016/j.scriptamat.2013.03.014
Nanoindentation cracking in gallium arsenide: part II. TEM investigation
Pouvreau, C., Wasmer, K., Hessler-Wyser, H., Ganière, J. D., Breguet, J. M., Michler, J., … Giovanola, J. H. (2013). Nanoindentation cracking in gallium arsenide: part II. TEM investigation. Journal of Materials Research, 28(20), 2799-2809. https://doi.org/10.1557/jmr.2013.275
Nanoindentation cracking in gallium arsenide: Part I. In situ SEM nanoindentation
Wasmer, K., Pouvreau, C., Breguet, J. M., Michler, J., Schulz, D., & Giovanola, J. H. (2013). Nanoindentation cracking in gallium arsenide: Part I. In situ SEM nanoindentation. Journal of Materials Research, 28(20), 2785-2798. https://doi.org/10.1557/jmr.2013.252
Sequence of deformation and cracking behaviours of Gallium–Arsenide during nano-scratching
Wasmer, K., Parlinska-Wojtan, M., Graça, S., & Michler, J. (2013). Sequence of deformation and cracking behaviours of Gallium–Arsenide during nano-scratching. Materials Chemistry and Physics, 138(1), 38-48. https://doi.org/10.1016/j.matchemphys.2012.10.033
Correlation of electrolyte-derived inclusions to crystallization in the early stage of anodic oxide film growth on titanium
Jaeggi, C., Parlinska-Wojtan, M., & Kern, P. (2012). Correlation of electrolyte-derived inclusions to crystallization in the early stage of anodic oxide film growth on titanium. Thin Solid Films, 520(6), 1804-1808. https://doi.org/10.1016/j.tsf.2011.08.092
Al<SUB>2</SUB>O<SUB>3</SUB>–Al<SUB>2</SUB>O<SUB>3</SUB> and Al<SUB>2</SUB>O<SUB>3</SUB>–Ti solder joints—influence of ceramic metallization and thermal pretreatment on joint properties
Leinenbach, C., Weyrich, N., Elsener, H. R., & Gamez, G. (2012). Al2O3–Al2O3 and Al2O3–Ti solder joints—influence of ceramic metallization and thermal pretreatment on joint properties. International Journal of Applied Ceramic Technology, 9(4), 751-763. https://doi.org/10.1111/j.1744-7402.2012.02769.x
Plasticité dans les micro piliers de silicium: étude en température
Montagne, A., Rabier, J., Wheeler, J. M., Demenet, J. L., Michler, J., & Ghisleni, R. (2012). Plasticité dans les micro piliers de silicium: étude en température. Presented at the Indentation 2012. Lyon, France.
Studying grain boundary regions in polycrystalline materials using spherical nano-indentation and orientation imaging microscopy
Pathak, S., Michler, J., Wasmer, K., & Kalidindi, S. R. (2012). Studying grain boundary regions in polycrystalline materials using spherical nano-indentation and orientation imaging microscopy. Journal of Materials Science, 47(2), 815-823. https://doi.org/10.1007/s10853-011-5859-z
Orientation dependence of stress-induced phase transformation and dislocation plasticity in NiTi shape memory alloys on the micro scale
Pfetzing-Micklich, J., Ghisleni, R., Simon, T., Somsen, C., Michler, J., & Eggeler, G. (2012). Orientation dependence of stress-induced phase transformation and dislocation plasticity in NiTi shape memory alloys on the micro scale. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 538, 265-271. https://doi.org/10.1016/j.msea.2012.01.042
<I>In situ</I> deformation of micro-objects as a tool to uncover the micro-mechanisms of the brittle-to-ductile transition in semiconductors: the case of indium antimonide
Thilly, L., Ghisleni, R., Swistak, C., & Michler, J. (2012). In situ deformation of micro-objects as a tool to uncover the micro-mechanisms of the brittle-to-ductile transition in semiconductors: the case of indium antimonide. Philosophical Magazine, 92(25-27), 3315-3325. https://doi.org/10.1080/14786435.2012.704422
 

Pages