Active Filters

  • (-) Journal = Advanced Electronic Materials
  • (-) Empa Authors ≠ Torres Sevilla, Galo
  • (-) Empa Laboratories ≠ 304 Mechanical Systems Engineering
Search Results 1 - 10 of 10
  • RSS Feed
Select Page
Picosecond time‐scale resistive switching monitored in real‐time
Csontos, M., Horst, Y., Jimenez Olalla, N., Koch, U., Shorubalko, I., Halbritter, A., & Leuthold, J. (2023). Picosecond time‐scale resistive switching monitored in real‐time. Advanced Electronic Materials, 9(6), 2201104 (12 pp.). https://doi.org/10.1002/aelm.202201104
Reconfigurable field-effect transistor technology via heterogeneous integration of SiGe with crystalline Al contacts
Fuchsberger, A., Wind, L., Sistani, M., Behrle, R., Nazzari, D., Aberl, J., … Weber, W. M. (2023). Reconfigurable field-effect transistor technology via heterogeneous integration of SiGe with crystalline Al contacts. Advanced Electronic Materials, 9(6), 2201259 (10 pp.). https://doi.org/10.1002/aelm.202201259
Tunable quantum dots from atomically precise graphene nanoribbons using a multi‐gate architecture
Zhang, J., Braun, O., Borin Barin, G., Sangtarash, S., Overbeck, J., Darawish, R., … Calame, M. (2023). Tunable quantum dots from atomically precise graphene nanoribbons using a multi‐gate architecture. Advanced Electronic Materials, 9(4), 2201204 (8 pp.). https://doi.org/10.1002/aelm.202201204
Heterostructure from PbS quantum dot and carbon nanotube inks for high-efficiency near-infrared light-emitting field-effect transistors
Bederak, D., Shulga, A., Kahmann, S., Talsma, W., Pelanskis, J., Dirin, D. N., … Loi, M. A. (2022). Heterostructure from PbS quantum dot and carbon nanotube inks for high-efficiency near-infrared light-emitting field-effect transistors. Advanced Electronic Materials, 8(7), 2101126 (7 pp.). https://doi.org/10.1002/aelm.202101126
Conductive hybrid Cu-HHTP-TCNQ metal–organic frameworks for chemiresistive sensing
Lüder, L., Gubicza, A., Stiefel, M., Overbeck, J., Beretta, D., Sadeghpour, A., … Calame, M. (2022). Conductive hybrid Cu-HHTP-TCNQ metal–organic frameworks for chemiresistive sensing. Advanced Electronic Materials, 8(3), 2100871 (10 pp.). https://doi.org/10.1002/aelm.202100871
Metal‐textile laser welding for wearable sensors applications
Fromme, N. P., Li, Y., Camenzind, M., Toncelli, C., & Rossi, R. M. (2021). Metal‐textile laser welding for wearable sensors applications. Advanced Electronic Materials, 7(4), 2001238 (9 pp.). https://doi.org/10.1002/aelm.202001238
Polycrystalline Ge nanosheets embedded in metal-semiconductor heterostructures enabling wafer-scale 3D integration of Ge nanodevices with self-aligned Al contacts
Sistani, M., Böckle, R., Wind, L., Eysin, K., Maeder, X., Schweizer, P., … Weber, W. M. (2021). Polycrystalline Ge nanosheets embedded in metal-semiconductor heterostructures enabling wafer-scale 3D integration of Ge nanodevices with self-aligned Al contacts. Advanced Electronic Materials, 7(5), 2100101 (9 pp.). https://doi.org/10.1002/aelm.202100101
Conformal Cu coating on electrospun nanofibers for 3D electro‐conductive networks
Jiang, F., Ju, W., Pan, Z., Lin, L., Yue, Y., Zhao, Y. ‐B., … Wang, J. (2020). Conformal Cu coating on electrospun nanofibers for 3D electro‐conductive networks. Advanced Electronic Materials, 6(2), 1900767 (11 pp.). https://doi.org/10.1002/aelm.201900767
3D printed disposable wireless ion sensors with biocompatible cellulose composites
Kim, T., Bao, C., Hausmann, M., Siqueira, G., Zimmermann, T., & Kim, W. S. (2019). 3D printed disposable wireless ion sensors with biocompatible cellulose composites. Advanced Electronic Materials, 5(2), 1800778 (7 pp.). https://doi.org/10.1002/aelm.201800778
Double gate PbS quantum dot field-effect transistors for tuneable electrical characteristics
Shulga, A. G., Piveteau, L., Bisri, S. Z., Kovalenko, M. V., & Loi, M. A. (2016). Double gate PbS quantum dot field-effect transistors for tuneable electrical characteristics. Advanced Electronic Materials, 2(4), 1500467 (8 pp.). https://doi.org/10.1002/aelm.201500467