Active Filters

  • (-) Journal = Advanced Energy Materials
Search Results 21 - 40 of 41
Select Page
Heavy alkali treatment of Cu(In,Ga)Se<sub>2</sub> solar cells: surface versus bulk effects
Siebentritt, S., Avancini, E., Bär, M., Bombsch, J., Bourgeois, E., Buecheler, S., … Wolter, M. H. (2020). Heavy alkali treatment of Cu(In,Ga)Se2 solar cells: surface versus bulk effects. Advanced Energy Materials, 10(8), 1903752 (15 pp.). https://doi.org/10.1002/aenm.201903752
Understanding and optimizing ultra-thin coordination polymer derivatives with high oxygen evolution performance
Zhao, Y., Wan, W., Chen, Y., Erni, R., Triana, C. A., Li, J., … Patzke, G. R. (2020). Understanding and optimizing ultra-thin coordination polymer derivatives with high oxygen evolution performance. Advanced Energy Materials, 10(37), 2002228 (13 pp.). https://doi.org/10.1002/aenm.202002228
Modifying La<sub>0.6</sub>Sr<sub>0.4</sub>MnO<sub>3</sub> perovskites with Cr incorporation for fast isothermal CO<sub>2</sub>‐splitting kinetics in solar‐driven thermochemical cycles
Carrillo, A. J., Bork, A. H., Moser, T., Sediva, E., Hood, Z. D., & Rupp, J. L. M. (2019). Modifying La0.6Sr0.4MnO3 perovskites with Cr incorporation for fast isothermal CO2‐splitting kinetics in solar‐driven thermochemical cycles. Advanced Energy Materials, 9(28), 1803886 (13 pp.). https://doi.org/10.1002/aenm.201803886
Advanced alkali treatments for high‐efficiency Cu(In,Ga)Se<sub>2</sub> solar cells on flexible substrates
Carron, R., Nishiwaki, S., Feurer, T., Hertwig, R., Avancini, E., Löckinger, J., … Tiwari, A. N. (2019). Advanced alkali treatments for high‐efficiency Cu(In,Ga)Se2 solar cells on flexible substrates. Advanced Energy Materials, 9(24), 1900408 (8 pp.). https://doi.org/10.1002/aenm.201900408
Efficiency improvement of near‐stoichiometric CuInSe<sub>2</sub>Solar cells for application in tandem devices
Feurer, T., Carron, R., Torres Sevilla, G., Fu, F., Pisoni, S., Romanyuk, Y. E., … Tiwari, A. N. (2019). Efficiency improvement of near‐stoichiometric CuInSe2Solar cells for application in tandem devices. Advanced Energy Materials, 9(35), 1901428 (6 pp.). https://doi.org/10.1002/aenm.201901428
Electrocatalytic reduction of gaseous CO<sub>2 </sub>to CO on Sn/Cu‐nanofiber‐based gas diffusion electrodes
Ju, W., Jiang, F., Ma, H., Pan, Z., Zhao, Y. ‐B., Pagani, F., … Battaglia, C. (2019). Electrocatalytic reduction of gaseous CO2 to CO on Sn/Cu‐nanofiber‐based gas diffusion electrodes. Advanced Energy Materials, 9(32), 1901514 (6 pp.). https://doi.org/10.1002/aenm.201901514
Rechargeable dual‐ion batteries with graphite as a cathode: key challenges and opportunities
Kravchyk, K. V., & Kovalenko, M. V. (2019). Rechargeable dual‐ion batteries with graphite as a cathode: key challenges and opportunities. Advanced Energy Materials, 9(35), 1901749 (16 pp.). https://doi.org/10.1002/aenm.201901749
Concurrent optimization of organic donor–acceptor pairs through machine learning
Padula, D., & Troisi, A. (2019). Concurrent optimization of organic donor–acceptor pairs through machine learning. Advanced Energy Materials, 9(40), 1902463 (8 pp.). https://doi.org/10.1002/aenm.201902463
High-efficiency (Li<small><sub><i>x</i></sub></small>Cu<small><sub>1−<i>x</i></sub></small>)<small><sub>2</sub></small>ZnSn(S,Se)<small><sub>4</sub></small> kesterite solar cells with lithium alloying
Cabas-Vidani, A., Haass, S. G., Andres, C., Caballero, R., Figi, R., Schreiner, C., … Romanyuk, Y. E. (2018). High-efficiency (LixCu1−x)2ZnSn(S,Se)4 kesterite solar cells with lithium alloying. Advanced Energy Materials, 8(34), 1801191 (8 pp.). https://doi.org/10.1002/aenm.201801191
Glass-type polyamorphism in Li-garnet thin film solid state battery conductors
Garbayo, I., Struzik, M., Bowman, W. J., Pfenninger, R., Stilp, E., & Rupp, J. L. M. (2018). Glass-type polyamorphism in Li-garnet thin film solid state battery conductors. Advanced Energy Materials, 8(12), 1702265 (14 pp.). https://doi.org/10.1002/aenm.201702265
Complex interplay between absorber composition and alkali doping in high-efficiency kesterite solar cells
Haass, S. G., Andres, C., Figi, R., Schreiner, C., Bürki, M., Romanyuk, Y. E., & Tiwari, A. N. (2018). Complex interplay between absorber composition and alkali doping in high-efficiency kesterite solar cells. Advanced Energy Materials, 8(4), 1701760 (9 pp.). https://doi.org/10.1002/aenm.201701760
Solution-processed low-bandgap CuIn(S,Se)<sub>2</sub> absorbers for high-efficiency single-junction and monolithic chalcopyrite-perovskite tandem solar cells
Uhl, A. R., Rajagopal, A., Clark, J. A., Murray, A., Feurer, T., Buecheler, S., … Hillhouse, H. W. (2018). Solution-processed low-bandgap CuIn(S,Se)2 absorbers for high-efficiency single-junction and monolithic chalcopyrite-perovskite tandem solar cells. Advanced Energy Materials, 8(27), 1801254 (8 pp.). https://doi.org/10.1002/aenm.201801254
A lithium amide-borohydride solid-state electrolyte with lithium-ion conductivities comparable to liquid electrolytes
Yan, Y., Kühnel, R. S., Remhof, A., Duchêne, L., Cuervo Reyes, E., Rentsch, D., … Battaglia, C. (2017). A lithium amide-borohydride solid-state electrolyte with lithium-ion conductivities comparable to liquid electrolytes. Advanced Energy Materials, 7(19), 1700294 (7 pp.). https://doi.org/10.1002/aenm.201700294
11.2% efficient solution processed kesterite solar cell with a low voltage deficit
Haass, S. G., Diethelm, M., Werner, M., Bissig, B., Romanyuk, Y. E., & Tiwari, A. N. (2015). 11.2% efficient solution processed kesterite solar cell with a low voltage deficit. Advanced Energy Materials, 5(18), 1500712 (7 pp.). https://doi.org/10.1002/aenm.201500712
Targeting ideal dual-absorber tandem water splitting using perovskite photovoltaics and CuIn<SUB>x</SUB>Ga<SUB>1-x</SUB>Se<SUB>2</SUB> photocathodes
Luo, J., Li, Z., Nishiwaki, S., Schreier, M., Mayer, M. T., Cendula, P., … Grätzel, M. (2015). Targeting ideal dual-absorber tandem water splitting using perovskite photovoltaics and CuInxGa1-xSe2 photocathodes. Advanced Energy Materials, 5(24), 1501520 (8 pp.). https://doi.org/10.1002/aenm.201501520
Photochemical transformations in fullerene and molybdenum oxide affect the stability of bilayer organic solar cells
Zhang, H., Borgschulte, A., Castro, F. A., Crockett, R., Gerecke, A. C., Deniz, O., … Hany, R. (2015). Photochemical transformations in fullerene and molybdenum oxide affect the stability of bilayer organic solar cells. Advanced Energy Materials, 5(2), 1400734 (9 pp.). https://doi.org/10.1002/aenm.201400734
High-surface-area porous platinum electrodes for enhanced charge transfer
Hu, Y., Yella, A., Guldin, S., Schreier, M., Stellacci, F., Grätzel, M., & Stefik, M. (2014). High-surface-area porous platinum electrodes for enhanced charge transfer. Advanced Energy Materials, 4(14), 1400510 (8 pp.). https://doi.org/10.1002/aenm.201400510
Tailoring impurity distribution in polycrystalline CdTe solar cells for enhanced minority carrier lifetime
Kranz, L., Gretener, C., Perrenoud, J., Jaeger, D., Gerstl, S. S. A., Schmitt, R., … Tiwari, A. N. (2014). Tailoring impurity distribution in polycrystalline CdTe solar cells for enhanced minority carrier lifetime. Advanced Energy Materials, 4(7), 1301400 (10 pp.). https://doi.org/10.1002/aenm.201301400
Photophysics of PbS quantum dot films capped with arsenic sulfide ligands
Tsokkou, D., Papagiorgis, P., Protesescu, L., Kovalenko, M. V., Choulis, S. A., Christofides, C., … Othonos, A. (2014). Photophysics of PbS quantum dot films capped with arsenic sulfide ligands. Advanced Energy Materials, 4(7), 1301547 (10 pp.). https://doi.org/10.1002/aenm.201301547
Development and performance of MnFeCrO<SUB>4</SUB>-based electrodes for solid oxide fuel cells
Stefan, E., Tsekouras, G., & Irvine, J. T. S. (2013). Development and performance of MnFeCrO4-based electrodes for solid oxide fuel cells. Advanced Energy Materials, 3(11), 1454-1462. https://doi.org/10.1002/aenm.201300361