Active Filters

  • (-) Empa Authors = Leparoux, Marc
Search Results 41 - 60 of 91
Select Page
Microstructure, mechanical, and impression creep properties of AlMg5–0.5 vol% Al<SUB>2</SUB>O<SUB>3</SUB> nanocomposites
Talari, M. K., Babu, N. K., Kallip, K., Leparoux, M., Koller, R. E., AlOgab, K. A., & Maeder, X. (2016). Microstructure, mechanical, and impression creep properties of AlMg5–0.5 vol% Al2O3 nanocomposites. Advanced Engineering Materials, 18(11), 1958-1966. https://doi.org/10.1002/adem.201600301
Investigation of different carbon nanotube reinforcements for fabricating bulk AlMg5 matrix nanocomposites
Kallip, K., Leparoux, M., AlOgab, K. A., Clerc, S., Deguilhem, G., Arroyo, Y., & Kwon, H. (2015). Investigation of different carbon nanotube reinforcements for fabricating bulk AlMg5 matrix nanocomposites. Journal of Alloys and Compounds, 646, 710-718. https://doi.org/10.1016/j.jallcom.2015.06.169
Mechanical performance of carbon nanotube-reinforced nanocomposites
Kwon, H., Leparoux, M., Hwang, K., Choi, J., & Kim, K. (2015). Mechanical performance of carbon nanotube-reinforced nanocomposites. In Y. H. Kim (Ed.), Advanced materials research: Vol. 1110. Advanced materials development & performance (pp. 60-64). https://doi.org/10.4028/www.scientific.net/AMR.1110.60
Mechanical properties of nanodiamond and multi-walled carbon nanotubes dual-reinforced aluminum matrix composite materials
Kwon, H., Kim, S. G., Lee, B. W., Seo, W. C., & Leparoux, M. (2015). Mechanical properties of nanodiamond and multi-walled carbon nanotubes dual-reinforced aluminum matrix composite materials. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 632, 72-77. https://doi.org/10.1016/j.msea.2015.02.057
Hardness of Multi Wall Carbon Nanotubes reinforced aluminium matrix composites
Bradbury, C. R., Gomon, J. K., Kollo, L., Kwon, H., & Leparoux, M. (2014). Hardness of Multi Wall Carbon Nanotubes reinforced aluminium matrix composites. Journal of Alloys and Compounds, 585, 362-367. https://doi.org/10.1016/j.jallcom.2013.09.142
Nanoparticle reinforced Aluminum alloy composites produced by powder metallurgy route
Kallip, K., Kollo, L., Bradbury, C., Kwon, H., & Leparoux, M. (2014). Nanoparticle reinforced Aluminum alloy composites produced by powder metallurgy route. Presented at the MRS fall meeting. Boston, USA.
Effect of milling time on dual-nanoparticulate-reinforced aluminum alloy matrix composite materials
Kwon, H., Saarna, M., Yoon, S., Weidenkaff, A., & Leparoux, M. (2014). Effect of milling time on dual-nanoparticulate-reinforced aluminum alloy matrix composite materials. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 590, 338-345. https://doi.org/10.1016/j.msea.2013.10.046
Functionally graded dual-nanoparticulate-reinforced aluminium matrix bulk materials fabricated by spark plasma sintering
Kwon, H., Leparoux, M., & Kawasaki, A. (2014). Functionally graded dual-nanoparticulate-reinforced aluminium matrix bulk materials fabricated by spark plasma sintering. Journal of Materials Science and Technology, 30(8), 736-742. https://doi.org/10.1016/j.jmst.2014.03.003
Functionally graded dual-nanoparticulate-reinforced aluminum matrix composite materials
Kwon, H., Lee, G. G., Leparoux, M., & Kawasaki, A. (2013). Functionally graded dual-nanoparticulate-reinforced aluminum matrix composite materials. Journal of physics: conference series: Vol. 419. (p. 012004 (4 pp.). Presented at the 12th international symposium on multiscale, multifunctional and functionally graded materials (FGM 2012). https://doi.org/10.1088/1742-6596/419/1/012004
Investigation of the interfacial phases formed between carbon nanotubes and aluminum in a bulk material
Kwon, H., Takamichi, M., Kawasaki, A., & Leparoux, M. (2013). Investigation of the interfacial phases formed between carbon nanotubes and aluminum in a bulk material. Materials Chemistry and Physics, 138(2-3), 787-793. https://doi.org/10.1016/j.matchemphys.2012.12.062
Surface fatigue of Al-metal matrix composites at impact loading
Saarna, M., Sergejev, F., Gomon, J. K., Kollo, L., & Leparoux, M. (2013). Surface fatigue of Al-metal matrix composites at impact loading. I. Hussainova (Ed.), Key engineering materials: Vol. 527. (pp. 119-124). Presented at the 21st international Baltic conference „engineering materials and tribology“ – BALTMATTRIB. https://doi.org/10.4028/www.scientific.net/KEM.527.119
Aerosol emission monitoring in the production of silicon carbide nanoparticles by induction plasma synthesis
Thompson, D., Leparoux, M., Jaeggi, C., Buha, J., Pui, D. Y. H., & Wang, J. (2013). Aerosol emission monitoring in the production of silicon carbide nanoparticles by induction plasma synthesis. Journal of Nanoparticle Research, 15, 2103 (13 pp.). https://doi.org/10.1007/s11051-013-2103-6
Fluid-dynamic characterization of a radio-frequency induction thermal plasma system for nanoparticle synthesis
Colombo, V., Deschenaux, C., Ghedini, E., Gherardi, M., Jaeggi, C., Leparoux, M., … Sanibondi, P. (2012). Fluid-dynamic characterization of a radio-frequency induction thermal plasma system for nanoparticle synthesis. Plasma Sources Science and Technology, 21(4), 045010 (12 pp.). https://doi.org/10.1088/0963-0252/21/4/045010
Dual-nanoparticulate-reinforced aluminum matrix composite materials
Kwon, H., Cho, S., Leparoux, M., & Kawasaki, A. (2012). Dual-nanoparticulate-reinforced aluminum matrix composite materials. Nanotechnology, 23(22), 225704 (9 pp.). https://doi.org/10.1088/0957-4484/23/22/225704
Hot extruded carbon nanotube reinforced aluminum matrix composite materials
Kwon, H., & Leparoux, M. (2012). Hot extruded carbon nanotube reinforced aluminum matrix composite materials. Nanotechnology, 23(41), 415701 (10 pp.). https://doi.org/10.1088/0957-4484/23/41/415701
Nano-silicon carbide reinforced aluminium produced by high-energy milling and hot consolidation
Kollo, L., Bradbury, C. R., Veinthal, R., Jäggi, C., Carreño-Morelli, E., & Leparoux, M. (2011). Nano-silicon carbide reinforced aluminium produced by high-energy milling and hot consolidation. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 528(21), 6606-6615. https://doi.org/10.1016/j.msea.2011.05.037
Carbon nanofiber reinforced aluminum matrix composite fabricated by combined process of spark plasma sintering and hot extrusion
Kwon, H., Kurita, H., Leparoux, M., & Kawasaki, A. (2011). Carbon nanofiber reinforced aluminum matrix composite fabricated by combined process of spark plasma sintering and hot extrusion. Journal of Nanoscience and Nanotechnology, 11(5), 4119-4126. https://doi.org/10.1166/jnn.2011.3866
Carbon nanotube gradient layers reinforced aluminum matrix composite materials
Kwon, H., Kim, S., Kwon, A., Chung, U., Cho, H., Kurita, H., … Leparoux, M. (2011). Carbon nanotube gradient layers reinforced aluminum matrix composite materials. Presented at the 18th international conference on composites materials. Jeju Island, S. Korea.
Fabrication of functionally graded carbon nanotube-reinforced aluminum matrix composite
Kwon, H., Bradbury, C. R., & Leparoux, M. (2011). Fabrication of functionally graded carbon nanotube-reinforced aluminum matrix composite. Advanced Engineering Materials, 13(4), 325-329. https://doi.org/10.1002/adem.201000251
Fabrication of single crystalline diamond reinforced aluminum matrix composite by powder metallurgy route
Kwon, H., Leparoux, M., Heintz, J. M., Silvain, J. F., & Kawasaki, A. (2011). Fabrication of single crystalline diamond reinforced aluminum matrix composite by powder metallurgy route. Metals and Materials International, 17(5), 755-763. https://doi.org/10.1007/s12540-011-1010-6