Active Filters

  • (-) Organizational Unit = 207 Thin Films and Photovoltaics
Search Results 41 - 60 of 391
Select Page
Novel back contact reflector for high efficiency and double-graded Cu(In,Ga)Se<small><sub>2</sub></small> thin-film solar cells
Bissig, B., Carron, R., Greuter, L., Nishiwaki, S., Avancini, E., Andres, C., … Tiwari, A. N. (2018). Novel back contact reflector for high efficiency and double-graded Cu(In,Ga)Se2 thin-film solar cells. Progress in Photovoltaics, 26(11), 894-900. https://doi.org/10.1002/pip.3029
Material dimensionality effects on electron transfer rates between CsPbBr<small><sub>3</sub></small> and CdSe nanoparticles
Brumberg, A., Diroll, B. T., Nedelcu, G., Sykes, M. E., Liu, Y., Harvey, S. M., … Schaller, R. D. (2018). Material dimensionality effects on electron transfer rates between CsPbBr3 and CdSe nanoparticles. Nano Letters, 18(8), 4771-4776. https://doi.org/10.1021/acs.nanolett.8b01238
Effect of magnesium incorporation on solution-processed kesterite solar cells
Caballero, R., Haass, S. G., Andres, C., Arques, L., Oliva, F., Izquierdo-Roca, V., & Romanyuk, Y. E. (2018). Effect of magnesium incorporation on solution-processed kesterite solar cells. Frontiers in Chemistry, 6, 5 (9 pp.). https://doi.org/10.3389/fchem.2018.00005
High-efficiency (Li<small><sub><i>x</i></sub></small>Cu<small><sub>1−<i>x</i></sub></small>)<small><sub>2</sub></small>ZnSn(S,Se)<small><sub>4</sub></small> kesterite solar cells with lithium alloying
Cabas-Vidani, A., Haass, S. G., Andres, C., Caballero, R., Figi, R., Schreiner, C., … Romanyuk, Y. E. (2018). High-efficiency (LixCu1−x)2ZnSn(S,Se)4 kesterite solar cells with lithium alloying. Advanced Energy Materials, 8(34), 1801191 (8 pp.). https://doi.org/10.1002/aenm.201801191
Refractive indices of layers and optical simulations of Cu(In,Ga)Se<sub>2</sub> solar cells
Carron, R., Avancini, E., Feurer, T., Bissig, B., Losio, P. A., Figi, R., … Tiwari, A. N. (2018). Refractive indices of layers and optical simulations of Cu(In,Ga)Se2 solar cells. Science and Technology of Advanced Materials, 19(1), 396-410. https://doi.org/10.1080/14686996.2018.1458579
Single-graded CIGS with narrow bandgap for tandem solar cells
Feurer, T., Bissig, B., Weiss, T. P., Carron, R., Avancini, E., Löckinger, J., … Tiwari, A. N. (2018). Single-graded CIGS with narrow bandgap for tandem solar cells. Science and Technology of Advanced Materials, 19(1), 263-270. https://doi.org/10.1080/14686996.2018.1444317
Compositionally graded absorber for efficient and stable near-infrared-transparent perovskite solar cells
Fu, F., Pisoni, S., Weiss, T. P., Feurer, T., Wäckerlin, A., Fuchs, P., … Buecheler, S. (2018). Compositionally graded absorber for efficient and stable near-infrared-transparent perovskite solar cells. Advanced Science, 5(3), 1700675 (11 pp.). https://doi.org/10.1002/advs.201700675
Unraveling exciton–phonon coupling in individual FAPbI<small><sub>3</sub></small> nanocrystals emitting near-infrared single photons
Fu, M., Tamarat, P., Trebbia, J. B., Bodnarchuk, M. I., Kovalenko, M. V., Even, J., & Lounis, B. (2018). Unraveling exciton–phonon coupling in individual FAPbI3 nanocrystals emitting near-infrared single photons. Nature Communications, 9(1), 3318 (10 pp.). https://doi.org/10.1038/s41467-018-05876-0
Superweak coordinating anion as superstrong enhancer of cyanine organic semiconductor properties
Gesevičius, D., Neels, A., Yakunin, S., Hack, E., Kovalenko, M. V., Nüesch, F., & Heier, J. (2018). Superweak coordinating anion as superstrong enhancer of cyanine organic semiconductor properties. ChemPhysChem, 19(24), 3356-3363. https://doi.org/10.1002/cphc.201800863
Popcorn-shaped Fe<sub>x</sub>O (Wüstite) nanoparticles from a single-source precursor: colloidal synthesis and magnetic properties
Guntlin, C. P., Ochsenbein, S. T., Wörle, M., Erni, R., Kravchyk, K. V., & Kovalenko, M. V. (2018). Popcorn-shaped FexO (Wüstite) nanoparticles from a single-source precursor: colloidal synthesis and magnetic properties. Chemistry of Materials, 30(4), 1249-1256. https://doi.org/10.1021/acs.chemmater.7b04382
Dictating anisotropic electric conductivity of a transparent copper nanowire coating by the surface structure of wood
Guo, H., Büchel, M., Li, X., Wäckerlin, A., Chen, Q., & Burgert, I. (2018). Dictating anisotropic electric conductivity of a transparent copper nanowire coating by the surface structure of wood. Journal of the Royal Society Interface, 15(142), 20170864 (9 pp.). https://doi.org/10.1098/rsif.2017.0864
Complex interplay between absorber composition and alkali doping in high-efficiency kesterite solar cells
Haass, S. G., Andres, C., Figi, R., Schreiner, C., Bürki, M., Romanyuk, Y. E., & Tiwari, A. N. (2018). Complex interplay between absorber composition and alkali doping in high-efficiency kesterite solar cells. Advanced Energy Materials, 8(4), 1701760 (9 pp.). https://doi.org/10.1002/aenm.201701760
Effects of potassium on kesterite solar cells: similarities, differences and synergies with sodium
Haass, S. G., Andres, C., Figi, R., Schreiner, C., Bürki, M., Tiwari, A. N., & Romanyuk, Y. E. (2018). Effects of potassium on kesterite solar cells: similarities, differences and synergies with sodium. AIP Advances, 8(1), 015133 (11 pp.). https://doi.org/10.1063/1.5013114
Colloidal bismuth Nanocrystals as a model anode material for rechargeable Mg-ion batteries: atomistic and mesoscale insights
Kravchyk, K. V., Piveteau, L., Caputo, R., He, M., Stadie, N. P., Bodnarchuk, M. I., … Kovalenko, M. V. (2018). Colloidal bismuth Nanocrystals as a model anode material for rechargeable Mg-ion batteries: atomistic and mesoscale insights. ACS Nano, 12(8), 8297-8307. https://doi.org/10.1021/acsnano.8b03572
High-energy-density dual-ion battery for stationary storage of electricity using concentrated potassium fluorosulfonylimide
Kravchyk, K. V., Bhauriyal, P., Piveteau, L., Guntlin, C. P., Pathak, B., & Kovalenko, M. V. (2018). High-energy-density dual-ion battery for stationary storage of electricity using concentrated potassium fluorosulfonylimide. Nature Communications, 9, 4469 (9 pp.). https://doi.org/10.1038/s41467-018-06923-6
NaFeF<sub>3</sub> nanoplates as low-cost sodium and lithium cathode materials for stationary energy storage
Kravchyk, K. V., Zünd, T., Wörle, M., Kovalenko, M. V., & Bodnarchuk, M. I. (2018). NaFeF3 nanoplates as low-cost sodium and lithium cathode materials for stationary energy storage. Chemistry of Materials, 30(6), 1825-1829. https://doi.org/10.1021/acs.chemmater.7b04743
Colloidal CsPbX<sub>3</sub> (X = Cl, Br, I) nanocrystals 2.0: zwitterionic capping ligands for improved durability and stability
Krieg, F., Ochsenbein, S. T., Yakunin, S., ten Brinck, S., Aellen, P., Süess, A., … Kovalenko, M. V. (2018). Colloidal CsPbX3 (X = Cl, Br, I) nanocrystals 2.0: zwitterionic capping ligands for improved durability and stability. ACS Energy Letters, 3(3), 641-646. https://doi.org/10.1021/acsenergylett.8b00035
Exploration of near-infrared-emissive colloidal multinary lead halide perovskite nanocrystals using an automated microfluidic platform
Lignos, I., Morad, V., Shynkarenko, Y., Bernasconi, C., Maceiczyk, R. M., Protesescu, L., … Kovalenko, M. V. (2018). Exploration of near-infrared-emissive colloidal multinary lead halide perovskite nanocrystals using an automated microfluidic platform. ACS Nano, 12(6), 5504-5517. https://doi.org/10.1021/acsnano.8b01122
Unveiling the shape evolution and halide-ion-segregation in blue-emitting formamidinium lead halide perovskite nanocrystals using an automated microfluidic platform
Lignos, I., Protesescu, L., Emiroglu, D. B., MacEiczyk, R., Schneider, S., Kovalenko, M. V., & DeMello, A. J. (2018). Unveiling the shape evolution and halide-ion-segregation in blue-emitting formamidinium lead halide perovskite nanocrystals using an automated microfluidic platform. Nano Letters, 18(2), 1246-1252. https://doi.org/10.1021/acs.nanolett.7b04838
Ni-Al-Cr superalloy as high temperature cathode current collector for advanced thin film Li batteries
Lin, T. Y., Filippin, A., Rawlence, M., Zünd, T., Kravchyk, K., Sastre-Pellicer, J., … Buecheler, S. (2018). Ni-Al-Cr superalloy as high temperature cathode current collector for advanced thin film Li batteries. RSC Advances, 8(36), 20304-20313. https://doi.org/10.1039/c8ra02461h