Active Filters

  • (-) Full Text ≠ Open Access
  • (-) Keywords = thermal conductivity
Search Results 1 - 20 of 33
Select Page
Nanostructured aluminium-diamond composites for thermal management applications
Khalid, F. A., Beffort, O., Klotz, U. E., & Gasser, P. (2003). Nanostructured aluminium-diamond composites for thermal management applications. In Proceedings IEEE INMIC 2003. 7th international multi topic conference (pp. 462-465). https://doi.org/10.1109/INMIC.2003.1416771
Aerogels for superinsulation
Wernery, J., Rigacci, A., Achard, P., & Koebel, M. M. (2023). Aerogels for superinsulation. In M. A. Aegerter, N. Leventis, M. Koebel, & S. A. Steiner III (Eds.), Springer handbooks. Springer handbook of aerogels (pp. 1263-1287). https://doi.org/10.1007/978-3-030-27322-4_48
Sustainable concrete: design and testing
Visser, J., Couto, S., Gupta, A., Larraza Alvarez, I., Chozas Ligero, V., Sotto Mayor, T., … Soutsos, M. (2015). Sustainable concrete: design and testing. Heron, 60(1-2), 59-91.
Reinforced and superinsulating silica aerogel through in situ cross-linking with silane terminated prepolymers
Iswar, S., Snellings, G. M. B. F., Zhao, S., Erni, R., Bahk, Y. K., Wang, J., … Malfait, W. J. (2018). Reinforced and superinsulating silica aerogel through in situ cross-linking with silane terminated prepolymers. Acta Materialia, 147, 322-328. https://doi.org/10.1016/j.actamat.2018.01.031
Half-Heusler superlattices as model systems for nanostructured thermoelectrics
Komar, P., Jaeger, T., Euler, C., Angel, E. C., Kolb, U., Müller, M. M., … Jakob, G. (2016). Half-Heusler superlattices as model systems for nanostructured thermoelectrics. Physica Status Solidi A: Applications and Materials, 213(3), 732-738. https://doi.org/10.1002/pssa.201532445
Radiative heat losses in thermal conductivity measurements: a correction for linear temperature gradients
Gałązka, K., Populoh, S., Xie, W., Hulliger, J., & Weidenkaff, A. (2016). Radiative heat losses in thermal conductivity measurements: a correction for linear temperature gradients. Measurement, 90, 187-191. https://doi.org/10.1016/j.measurement.2016.04.059
Superinsulating polyisocyanate based aerogels: a targeted search for the optimum solvent system
Zhu, Z., Snellings, G. M. B. F., Koebel, M. M., & Malfait, W. J. (2017). Superinsulating polyisocyanate based aerogels: a targeted search for the optimum solvent system. ACS Applied Materials and Interfaces, 9(21), 18222-18230. https://doi.org/10.1021/acsami.7b03344
Reaction of aerogel containing ceramic fibre insulation to fire exposure
Ghazi Wakili, K., & Remhof, A. (2016). Reaction of aerogel containing ceramic fibre insulation to fire exposure. Fire and Materials, 41(1), 29-39. https://doi.org/10.1002/fam.2367
Analysis of the thermal comfort properties and heat protection performance of cotton/nylon-Kermel fabrics
Kakvan, A., Shaikhzadeh Najar, S., & Psikuta, A. (2016). Analysis of the thermal comfort properties and heat protection performance of cotton/nylon-Kermel fabrics. Journal of Textiles and Polymers, 4(1), 37-44.
Study on effect of blend ratio on thermal comfort properties of cotton/nylon-blended fabrics with high-performance Kermel fibre
Kakvan, A., Shaikhzadeh Najar, S., & Psikuta, A. (2015). Study on effect of blend ratio on thermal comfort properties of cotton/nylon-blended fabrics with high-performance Kermel fibre. The Journal of The Textile Institute, 106(6), 674-682. https://doi.org/10.1080/00405000.2014.934045
Electrical, thermal and induction heating properties of dense asphalt concrete
Garcia, A., Norambuena-Contreras, J., & Partl, M. N. (2013). Electrical, thermal and induction heating properties of dense asphalt concrete. In J. R. Chang & S. R. Yang (Eds.), Advanced materials research: Vol. 723. Innovation and sustainable technology in road and airfield pavement (pp. 303-311). https://doi.org/10.4028/www.scientific.net/AMR.723.303
Effect of the porosity on the thermophysical properties of cerium oxide up to 1300K and their implications for microwave sintering of spherical ceria gels
Hammoud, H., Vaucher, S., & Valdivieso, F. (2013). Effect of the porosity on the thermophysical properties of cerium oxide up to 1300K and their implications for microwave sintering of spherical ceria gels (p. (4 pp.). Presented at the 14th international conference on microwave and high frequency heating (Ampere 2013). .
Micro-thermal CMOS-based gas quality sensing for control of spark ignition engines
Soltic, P., Biffiger, H., Prêtre, P., & Kempe, A. (2016). Micro-thermal CMOS-based gas quality sensing for control of spark ignition engines. Measurement, 91, 661-679. https://doi.org/10.1016/j.measurement.2016.05.098
New approach to low thermal conductivity of thermal barrier protection with improved mechanical integrity
Michálek, M., Tewari, A., Blugan, G., Bowen, P., Hofmann, H., Graule, T., & Kuebler, J. (2016). New approach to low thermal conductivity of thermal barrier protection with improved mechanical integrity. Ceramics International, 42(6), 6817-6824. https://doi.org/10.1016/j.ceramint.2016.01.059
Aquacasting—a new shaping concept for water based reactive tape casting
Durif, C., Frömder, C., Affolter, C., Lippmann, W., & Graule, T. (2015). Aquacasting—a new shaping concept for water based reactive tape casting. Journal of the European Ceramic Society, 35(13), 3633-3640. https://doi.org/10.1016/j.jeurceramsoc.2015.04.029
Dielectric and thermal properties of cerium dioxide up to 1000 °C and the effect of the porosity for microwave processing studies
Hammoud, H., Vaucher, S., & Valdivieso, F. (2015). Dielectric and thermal properties of cerium dioxide up to 1000 °C and the effect of the porosity for microwave processing studies. Thermochimica Acta, 617, 83-89. https://doi.org/10.1016/j.tca.2015.08.011
Thermal behaviour of autoclaved aerated concrete exposed to fire
Ghazi Wakili, K., Hugi, E., Karvonen, L., Schnewlin, P., & Winnefeld, F. (2015). Thermal behaviour of autoclaved aerated concrete exposed to fire. Cement and Concrete Composites, 62, 52-58. https://doi.org/10.1016/j.cemconcomp.2015.04.018
Thermal conductivity of gypsum boards beyond dehydration temperature
Ghazi Wakili, K., Koebel, M., Glaettli, T., & Hofer, M. (2015). Thermal conductivity of gypsum boards beyond dehydration temperature. Fire and Materials, 39(1), 85-94. https://doi.org/10.1002/fam.2234
Transparent silicone calcium fluoride nanocomposite with improved thermal conductivity
Schneider, R., Lüthi, S. R., Albrecht, K., Brülisauer, M., Bernard, A., & Geiger, T. (2015). Transparent silicone calcium fluoride nanocomposite with improved thermal conductivity. Macromolecular Materials and Engineering, 300(1), 80-85. https://doi.org/10.1002/mame.201400172
Anisotropic layered media with microinclusions: thermal properties of arc-evaporation multilayer metal nitrides
Böttger, P. H. M., Gusarov, A. V., Shklover, V., Patscheider, J., & Sobiech, M. (2014). Anisotropic layered media with microinclusions: thermal properties of arc-evaporation multilayer metal nitrides. International Journal of Thermal Sciences, 77, 75-83. https://doi.org/10.1016/j.ijthermalsci.2013.10.011