Active Filters

  • (-) Empa Authors ≠ Lura, Pietro
  • (-) Journal ≠ Concrete - innovation and design. fib symposium proceedings
  • (-) Journal = Journal of Physical Chemistry C
Search Results 1 - 20 of 122

Pages

  • RSS Feed
Select Page
NMR chemical shifts of <SUP>11</SUP>B in metal borohydrides from first-principle calculations
Łodziana, Z., Błoński, P., Yan, Y., Rentsch, D., & Remhof, A. (2014). NMR chemical shifts of 11B in metal borohydrides from first-principle calculations. Journal of Physical Chemistry C, 118(13), 6594-6603. https://doi.org/10.1021/jp4120833
Energy transfer between inorganic perovskite nanocrystals
de Weerd, C., Gomez, L., Zhang, H., Buma, W. J., Nedelcu, G., Kovalenko, M. V., & Gregorkiewicz, T. (2016). Energy transfer between inorganic perovskite nanocrystals. Journal of Physical Chemistry C, 120(24), 13310-13315. https://doi.org/10.1021/acs.jpcc.6b04768
Cu<sub>2</sub>S/BiVO<sub>4</sub> heterostructure photoanode with extended wavelength range for efficient water splitting
Zhu, S. S., Zhang, Y., Zou, Y., Guo, S. Y., Liu, H., Wang, J. J., & Braun, A. (2021). Cu2S/BiVO4 heterostructure photoanode with extended wavelength range for efficient water splitting. Journal of Physical Chemistry C, 125(29), 15890-15898. https://doi.org/10.1021/acs.jpcc.1c02964
Identifying reaction species by evolutionary fitting and kinetic analysis: an example of CO<sub>2</sub> hydrogenation in DRIFTS
Zhao, K., Wang, L., Moioli, E., Calizzi, M., & Züttel, A. (2019). Identifying reaction species by evolutionary fitting and kinetic analysis: an example of CO2 hydrogenation in DRIFTS. Journal of Physical Chemistry C, 123(14), 8785-8792. https://doi.org/10.1021/acs.jpcc.8b11105
In situ control of the adsorption species in CO<sub>2</sub> hydrogenation: determination of intermediates and byproducts
Zhao, K., Wang, L., Calizzi, M., Moioli, E., & Züttel, A. (2018). In situ control of the adsorption species in CO2 hydrogenation: determination of intermediates and byproducts. Journal of Physical Chemistry C, 122(36), 20888-20893. https://doi.org/10.1021/acs.jpcc.8b06508
Understanding and controlling nucleation and growth of TiO<SUB>2</SUB> deposited on multiwalled carbon nanotubes by atomic layer deposition
Zhang, Y., Guerra-Nuñez, C., Utke, I., Michler, J., Rossell, M. D., & Erni, R. (2015). Understanding and controlling nucleation and growth of TiO2 deposited on multiwalled carbon nanotubes by atomic layer deposition. Journal of Physical Chemistry C, 119(6), 3379-3387. https://doi.org/10.1021/jp511004h
Incorporation of sodium and aluminum in cementitious calcium-alumino-silicate-hydrate C-(A)-S-H phases studied by <sup>23</sup>Na, <sup>27</sup>Al, and <sup>29</sup>Si MAS NMR spectroscopy
Yang, S. Y., Yan, Y., Lothenbach, B., & Skibsted, J. (2021). Incorporation of sodium and aluminum in cementitious calcium-alumino-silicate-hydrate C-(A)-S-H phases studied by 23Na, 27Al, and 29Si MAS NMR spectroscopy. Journal of Physical Chemistry C, 125(51), 27975-27995. https://doi.org/10.1021/acs.jpcc.1c08419
Controlling the dehydrogenation reaction toward reversibility of the LiBH<SUB>4</SUB>–Ca(BH<SUB>4</SUB>)<SUB>2</SUB> eutectic system
Yan, Y., Remhof, A., Mauron, P., Rentsch, D., Łodziana, Z., Lee, Y. S., … Züttel, A. (2013). Controlling the dehydrogenation reaction toward reversibility of the LiBH4–Ca(BH4)2 eutectic system. Journal of Physical Chemistry C, 117(17), 8878-8886. https://doi.org/10.1021/jp401628g
Formation of intermediate compound Li<SUB>2</SUB>B<SUB>12</SUB>H<SUB>12</SUB> during the dehydrogenation process of the LiBH<SUB>4</SUB>- MgH<SUB>2</SUB> system
Yan, Y., Li, H. W., Maekawa, H., Miwa, K., Towata, Sichi, & Orimo, Sichi. (2011). Formation of intermediate compound Li2B12H12 during the dehydrogenation process of the LiBH4- MgH2 system. Journal of Physical Chemistry C, 115(39), 19419-19423. https://doi.org/10.1021/jp205450c
Chiral biphenyldicarboxylic acid networks stabilized by hydrogen bonding
Xiao, W. D., Jiang, Y. H., Aït-Mansour, K., Ruffieux, P., Gao, H. J., & Fasel, R. (2010). Chiral biphenyldicarboxylic acid networks stabilized by hydrogen bonding. Journal of Physical Chemistry C, 114(14), 6646-6649. https://doi.org/10.1021/jp100701y
Coverage-induced chiral transition of Co(II)-5,15-diphenylporphyrin self-assemblies on Cu(111)
Xiang, F., & Schneider, M. A. (2022). Coverage-induced chiral transition of Co(II)-5,15-diphenylporphyrin self-assemblies on Cu(111). Journal of Physical Chemistry C, 126(15), 6745-6752. https://doi.org/10.1021/acs.jpcc.1c10939
Excited spin-state trapping in spin crossover complexes on ferroelectric substrates
Wäckerlin, C., Donati, F., Singha, A., Baltic, R., Decurtins, S., Liu, S. X., … Dreiser, J. (2018). Excited spin-state trapping in spin crossover complexes on ferroelectric substrates. Journal of Physical Chemistry C, 122(15), 8202-8208. https://doi.org/10.1021/acs.jpcc.7b10941
Autocatalytic surface explosion chemistry of 2D metal-organic frameworks
Wäckerlin, C., & Ernst, K. H. (2021). Autocatalytic surface explosion chemistry of 2D metal-organic frameworks. Journal of Physical Chemistry C, 125(24), 13343-13349. https://doi.org/10.1021/acs.jpcc.1c03809
Role of NH&lt;sub&gt;3&lt;/sub&gt; in the electron-induced reactions of adsorbed and solid cisplatin
Warneke, J., Rohdenburg, M., Zhang, Y., Orzagh, J., Vaz, A., Utke, I., … Swiderek, P. (2016). Role of NH3 in the electron-induced reactions of adsorbed and solid cisplatin. Journal of Physical Chemistry C, 120(7), 4112-4120. https://doi.org/10.1021/acs.jpcc.5b12184
Deposition mechanism of aluminum oxide on quantum dot films at atmospheric pressure and room temperature
Valdesueiro, D., Prabhu, M. K., Guerra-Nunez, C., Suchand Sandeep, C. S., Kinge, S., Siebbeles, L. D. A., … van Ommen, J. R. (2016). Deposition mechanism of aluminum oxide on quantum dot films at atmospheric pressure and room temperature. Journal of Physical Chemistry C, 120(8), 4266-4275. https://doi.org/10.1021/acs.jpcc.5b11653
On the local structure in ordered and disordered <em>closo</em>-hydroborate solid electrolytes
Till, P., Asakura, R., Remhof, A., & Zeier, W. G. (2023). On the local structure in ordered and disordered closo-hydroborate solid electrolytes. Journal of Physical Chemistry C, 127, 987-993. https://doi.org/10.1021/acs.jpcc.2c07835
Reaction pathway towards 7-atom-wide armchair graphene nanoribbon formation and identification of intermediate species on Au(111)
Thussing, S., Flade, S., Eimre, K., Pignedoli, C. A., Fasel, R., & Jakob, P. (2020). Reaction pathway towards 7-atom-wide armchair graphene nanoribbon formation and identification of intermediate species on Au(111). Journal of Physical Chemistry C, 124(29), 16009-16018. https://doi.org/10.1021/acs.jpcc.0c04596
Charge-carrier hopping in highly conductive CaMn<SUB>1−<I>x</I></SUB><I>M<SUB>x</SUB></I>O<SUB>3−δ</SUB> thermoelectrics
Thiel, P., Populoh, S., Yoon, S., Saucke, G., Rubenis, K., & Weidenkaff, A. (2015). Charge-carrier hopping in highly conductive CaMn1−xMxO3−δ thermoelectrics. Journal of Physical Chemistry C, 119(38), 21860-21867. https://doi.org/10.1021/acs.jpcc.5b05882
Observing chemical reactions by time-resolved high-resolution neutron imaging
Terreni, J., Trottmann, M., Delmelle, R., Heel, A., Trtik, P., Lehmann, E. H., & Borgschulte, A. (2018). Observing chemical reactions by time-resolved high-resolution neutron imaging. Journal of Physical Chemistry C, 122(41), 23574-23581. https://doi.org/10.1021/acs.jpcc.8b07321
The flexible surface revisited: adsorbate-induced reconstruction, homocoupling, and Sonogashira cross-coupling on the Au(100) surface
Sánchez-Sánchez, C., Yubero, F., González-Elipe, A. R., Feria, L., Fernández Sanz, J., & Lambert, R. M. (2014). The flexible surface revisited: adsorbate-induced reconstruction, homocoupling, and Sonogashira cross-coupling on the Au(100) surface. Journal of Physical Chemistry C, 118(22), 11677-11684. https://doi.org/10.1021/jp501321u
 

Pages