Active Filters

  • (-) Empa Authors ≠ Müller, Eike
  • (-) Journal = Physical Chemistry Chemical Physics
Search Results 1 - 20 of 70

Pages

  • RSS Feed
Select Page
The catalyzed hydrogen sorption mechanism in alkali alanates
Atakli, Z. Ö. K., Callini, E., Kato, S., Mauron, P., Orimo, S. I., & Züttel, A. (2015). The catalyzed hydrogen sorption mechanism in alkali alanates. Physical Chemistry Chemical Physics, 17(32), 20932-20940. https://doi.org/10.1039/c5cp01684c
Silicon carbide embedded in carbon nanofibres: structure and band gap determination
Bonatto Minella, A., Pohl, D., Täschner, C., Erni, R., Ummethala, R., Rümmeli, M. H., … Rellinghaus, B. (2014). Silicon carbide embedded in carbon nanofibres: structure and band gap determination. Physical Chemistry Chemical Physics, 16(44), 24437-24442. https://doi.org/10.1039/C4CP02975E
Hematite–NiO/α-Ni(OH)<SUB>2</SUB> heterostructure photoanode with high electrocatalytic current density and charge storage capacity
Bora, D. K., Braun, A., Erni, R., Müller, U., Döbeli, M., & Constable, E. C. (2013). Hematite–NiO/α-Ni(OH)2 heterostructure photoanode with high electrocatalytic current density and charge storage capacity. Physical Chemistry Chemical Physics, 15(30), 12648-12659. https://doi.org/10.1039/c3cp52179f
Hydrogen tracer diffusion in LiBH<SUB>4</SUB> measured by spatially resolved Raman spectroscopy
Borgschulte, A., Gremaud, R., Łodziana, Z., & Züttel, A. (2010). Hydrogen tracer diffusion in LiBH4 measured by spatially resolved Raman spectroscopy. Physical Chemistry Chemical Physics, 12(19), 5061-5066. https://doi.org/10.1039/c000229a
Hydrogen–deuterium exchange experiments to probe the decomposition reaction of sodium alanate
Borgschulte, A., Züttel, A., Hug, P., Barkhordarian, G., Eigen, N., Dornheim, M., … Ramirez-Cuesta, A. J. (2008). Hydrogen–deuterium exchange experiments to probe the decomposition reaction of sodium alanate. Physical Chemistry Chemical Physics, 10, 4045-4055. https://doi.org/10.1039/b803147a
Water distribution in a sorption enhanced methanation reactor by time resolved neutron imaging
Borgschulte, A., Delmelle, R., Duarte, R. B., Heel, A., Boillat, P., & Lehmann, E. (2016). Water distribution in a sorption enhanced methanation reactor by time resolved neutron imaging. Physical Chemistry Chemical Physics, 18(26), 17217-17223. https://doi.org/10.1039/C5CP07686B
Sorption enhanced CO<SUB>2</SUB> methanation
Borgschulte, A., Gallandat, N., Probst, B., Suter, R., Callini, E., Ferri, D., … Züttel, A. (2013). Sorption enhanced CO2 methanation. Physical Chemistry Chemical Physics, 15(24), 9620-9625. https://doi.org/10.1039/c3cp51408k
Photoinduced hole-transfer in semiconducting polymer/low-bandgap cyanine dye blends: evidence for unit charge separation quantum yield
Castro, F. A., Benmansour, H., Moser, J. E., Graeff, C. F. O., Nüesch, F., & Hany, R. (2009). Photoinduced hole-transfer in semiconducting polymer/low-bandgap cyanine dye blends: evidence for unit charge separation quantum yield. Physical Chemistry Chemical Physics, 11(39), 8886-8894. https://doi.org/10.1039/b909512h
Modulated excitation extended X-ray absorption fine structure spectroscopy
Chiarello, G. L., & Ferri, D. (2015). Modulated excitation extended X-ray absorption fine structure spectroscopy. Physical Chemistry Chemical Physics, 17(16), 10579-10591. https://doi.org/10.1039/C5CP00609K
A multifaceted approach to hydrogen storage
Churchard, A. J., Banach, E., Borgschulte, A., Caputo, R., Chen, J. C., Clary, D., … Züttel, A. (2011). A multifaceted approach to hydrogen storage. Physical Chemistry Chemical Physics, 13, 16955-16972. https://doi.org/10.1039/C1CP22312G
The reaction mechanism of the azide-alkyne Huisgen cycloaddition
Danese, M., Bon, M., Piccini, G. M., & Passerone, D. (2019). The reaction mechanism of the azide-alkyne Huisgen cycloaddition. Physical Chemistry Chemical Physics, 21(35), 19281-19287. https://doi.org/10.1039/C9CP02386K
Synthesis and thermodynamics of Ag–Cu nanoparticles
Delsante, S., Borzone, G., Novakovic, R., Piazza, D., Pigozzi, G., Janczak-Rusch, J., … Ennas, G. (2015). Synthesis and thermodynamics of Ag–Cu nanoparticles. Physical Chemistry Chemical Physics, 17(42), 28387-28393. https://doi.org/10.1039/C5CP02058A
Adsorption of carbon dioxide on Cu(110) and on hydrogen and oxygen covered Cu(110) surfaces
Ernst, K. H., Schlatterbeck, D., & Christmann, K. (1999). Adsorption of carbon dioxide on Cu(110) and on hydrogen and oxygen covered Cu(110) surfaces. Physical Chemistry Chemical Physics, 1(17), 4105-4112. https://doi.org/10.1039/a904169i
Hydrated-ion ordering in electrical double layers
Espinosa-Marzal, R. M., Drobek, T., Balmer, T., & Heuberger, M. P. (2012). Hydrated-ion ordering in electrical double layers. Physical Chemistry Chemical Physics, 14(17), 6085-6093. https://doi.org/10.1039/C2CP40255F
Synchrotron high energy X-ray methods coupled to phase sensitive analysis to characterize aging of solid catalysts with enhanced sensitivity
Ferri, D., Newton, M. A., Di Michiel, M., Yoon, S., Chiarello, G. L., Marchionni, V., … Gieshoff, J. (2013). Synchrotron high energy X-ray methods coupled to phase sensitive analysis to characterize aging of solid catalysts with enhanced sensitivity. Physical Chemistry Chemical Physics, 15(22), 8629-8639. https://doi.org/10.1039/C3CP44638G
First steps in combining modulation excitation spectroscopy with synchronous dispersive EXAFS/DRIFTS/mass spectrometry for <I>in situ</I> time resolved study of heterogeneous catalysts
Ferri, D., Kumar, M. S., Wirz, R., Eyssler, A., Korsak, O., Hug, P., … Newton, M. A. (2010). First steps in combining modulation excitation spectroscopy with synchronous dispersive EXAFS/DRIFTS/mass spectrometry for in situ time resolved study of heterogeneous catalysts. Physical Chemistry Chemical Physics, 12(21), 5634-5646. https://doi.org/10.1039/b926886c
Critical role of H-aggregation for high-efficiency photoinduced charge generation in pristine pentamethine cyanine salts
Fish, G. C., Moreno-Naranjo, J. M., Billion, A., Kratzert, D., Hack, E., Krossing, I., … Moser, J. E. (2021). Critical role of H-aggregation for high-efficiency photoinduced charge generation in pristine pentamethine cyanine salts. Physical Chemistry Chemical Physics, 23(41), 23886-23895. https://doi.org/10.1039/D1CP03251H
Spectroscopic assessment of the role of hydrogen in surface defects, in the electronic structure and transport properties of TiO<SUB>2</SUB>, ZnO and SnO<SUB>2</SUB> nanoparticles
Flak, D., Braun, A., Mun, B. S., Park, J. B., Parlinska-Wojtan, M., Graule, T., & Rekas, M. (2013). Spectroscopic assessment of the role of hydrogen in surface defects, in the electronic structure and transport properties of TiO2, ZnO and SnO2 nanoparticles. Physical Chemistry Chemical Physics, 15(5), 1417-1430. https://doi.org/10.1039/C2CP42601C
Core shell structure for solid gas synthesis of LiBD<SUB>4</SUB>
Friedrichs, O., Kim, J. W., Remhof, A., Wallacher, D., Hoser, A., Cho, Y. W., … Züttel, A. (2010). Core shell structure for solid gas synthesis of LiBD4. Physical Chemistry Chemical Physics, 12(18), 4600-4603. https://doi.org/10.1039/b927068j
The effect of Al on the hydrogen sorption mechanism of LiBH<SUB>4</SUB>
Friedrichs, O., Kim, J. W., Remhof, A., Buchter, F., Borgschulte, A., Wallacher, D., … Züttel, A. (2009). The effect of Al on the hydrogen sorption mechanism of LiBH4. Physical Chemistry Chemical Physics, 11(10), 1515-1520. https://doi.org/10.1039/b814282c
 

Pages